Abstract
Two distinct glycogen phosphorylase inhibitors, 5-chloro-1H-indole-2-carboxylic acid [1-(4-fluorobenzyl)-2-(4-hydroxy-piperidin-1-yl)-2-oxoethyl]amide (CP-320,626) and 1,4-dideoxy-1,4-D-arabinitol (DAB), were characterized in vitro with respect to the influence of glucose on their potencies. CP-320,626 has previously been shown to bind to a newly characterized indole site, whereas DAB seems to act as a glucose analogue, but with slightly different properties from those of glucose. When analysed in pig liver glycogen phosphorylase a (GPa) activity assays, the two inhibitors showed very different properties. When GPa activity was measured in the physiological direction (glycogenolysis), DAB was the most potent inhibitor with an IC(50) value of 740+/-9 nM compared with the IC(50) value for CP-320-626 of 2.39+/-0.37 microM. There was no effect of glucose on the inhibitory properties of DAB, whereas a glucose analogue N-acetyl-beta-D-glucopyranosylamine (1-GlcNAc) antagonized the effect of DAB. Likewise, there was no synergistic effect of CP-320,626 and glucose, whereas CP-320,626 and 1-GlcNAc inhibited GPa in synergy. Moreover, the synergistic effect of glucose and CP-320,626 was GPa-isoform-specific, since CP-320,626 and glucose inhibited rabbit muscle GPa in synergy when the GPa activity was measured towards glycogenolysis. When GPa activity was measured towards glycogen synthesis, CP-320,626 showed a synergistic effect with glucose, whereas the effect of DAB was slightly antagonized by glucose in this assay direction. Caffeine was included in the investigation as a control GP inhibitor, and both glucose and 1-GlcNAc potentiated the effect of caffeine independent of the assay direction. In primary cultured rat hepatocytes 1-GlcNAc and CP-320,626 inhibited basal and glucagon-induced glycogenolysis in synergy, whereas the ability of DAB to inhibit basal or glucagon-induced glycogenolysis was unaltered by 1-GlcNAc. Glucose had no effect on either CP-320,626 or DAB inhibition of glycogenolysis in cultured rat hepatocytes. In conclusion, the present study shows that the two GP inhibitors are kinetically very distinct and neither of the inhibitors demonstrates a physiologically relevant glucose dependence in vitro.
Full Text
The Full Text of this article is available as a PDF (173.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aiston S., Hampson L., Gómez-Foix A. M., Guinovart J. J., Agius L. Hepatic glycogen synthesis is highly sensitive to phosphorylase activity: evidence from metabolic control analysis. J Biol Chem. 2001 Apr 17;276(26):23858–23866. doi: 10.1074/jbc.M101454200. [DOI] [PubMed] [Google Scholar]
- Andersen B., Rassov A., Westergaard N., Lundgren K. Inhibition of glycogenolysis in primary rat hepatocytes by 1, 4-dideoxy-1,4-imino-D-arabinitol. Biochem J. 1999 Sep 15;342(Pt 3):545–550. [PMC free article] [PubMed] [Google Scholar]
- Board M., Bollen M., Stalmans W., Kim Y., Fleet G. W., Johnson L. N. Effects of C-1-substituted glucose analogue on the activation states of glycogen synthase and glycogen phosphorylase in rat hepatocytes. Biochem J. 1995 Nov 1;311(Pt 3):845–852. doi: 10.1042/bj3110845. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Consoli A. Role of liver in pathophysiology of NIDDM. Diabetes Care. 1992 Mar;15(3):430–441. doi: 10.2337/diacare.15.3.430. [DOI] [PubMed] [Google Scholar]
- DeFronzo R. A., Bonadonna R. C., Ferrannini E. Pathogenesis of NIDDM. A balanced overview. Diabetes Care. 1992 Mar;15(3):318–368. doi: 10.2337/diacare.15.3.318. [DOI] [PubMed] [Google Scholar]
- Diraison F., Large V., Brunengraber H., Beylot M. Non-invasive tracing of liver intermediary metabolism in normal subjects and in moderately hyperglycaemic NIDDM subjects. Evidence against increased gluconeogenesis and hepatic fatty acid oxidation in NIDDM. Diabetologia. 1998 Feb;41(2):212–220. doi: 10.1007/s001250050892. [DOI] [PubMed] [Google Scholar]
- Fletterick R. J., Madsen N. B. The structures and related functions of phosphorylase a. Annu Rev Biochem. 1980;49:31–61. doi: 10.1146/annurev.bi.49.070180.000335. [DOI] [PubMed] [Google Scholar]
- Fosgerau K., Westergaard N., Quistorff B., Grunnet N., Kristiansen M., Lundgren K. Kinetic and functional characterization of 1,4-dideoxy-1, 4-imino-d-arabinitol: a potent inhibitor of glycogen phosphorylase with anti-hyperglyceamic effect in ob/ob mice. Arch Biochem Biophys. 2000 Aug 15;380(2):274–284. doi: 10.1006/abbi.2000.1930. [DOI] [PubMed] [Google Scholar]
- Gómez-Lechón M. J., Ponsoda X., Castell J. V. A microassay for measuring glycogen in 96-well-cultured cells. Anal Biochem. 1996 May 1;236(2):296–301. doi: 10.1006/abio.1996.0170. [DOI] [PubMed] [Google Scholar]
- Hellerstein M. K., Neese R. A., Linfoot P., Christiansen M., Turner S., Letscher A. Hepatic gluconeogenic fluxes and glycogen turnover during fasting in humans. A stable isotope study. J Clin Invest. 1997 Sep 1;100(5):1305–1319. doi: 10.1172/JCI119644. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoover D. J., Lefkowitz-Snow S., Burgess-Henry J. L., Martin W. H., Armento S. J., Stock I. A., McPherson R. K., Genereux P. E., Gibbs E. M., Treadway J. L. Indole-2-carboxamide inhibitors of human liver glycogen phosphorylase. J Med Chem. 1998 Jul 30;41(16):2934–2938. doi: 10.1021/jm980264k. [DOI] [PubMed] [Google Scholar]
- Kasvinsky P. J., Madsen N. B., Sygusch J., Fletterick R. J. The regulation of glycogen phosphorylase alpha by nucleotide derivatives. Kinetic and x-ray crystallographic studies. J Biol Chem. 1978 May 10;253(9):3343–3351. [PubMed] [Google Scholar]
- Kasvinsky P. J., Shechosky S., Fletterick R. J. Synergistic regulation of phosphorylase a by glucose and caffeine. J Biol Chem. 1978 Dec 25;253(24):9102–9106. [PubMed] [Google Scholar]
- Maddaiah V. T., Madsen N. B. Kinetics of purified liver phosphorylase. J Biol Chem. 1966 Sep 10;241(17):3873–3881. [PubMed] [Google Scholar]
- Magnusson I., Rothman D. L., Gerard D. P., Katz L. D., Shulman G. I. Contribution of hepatic glycogenolysis to glucose production in humans in response to a physiological increase in plasma glucagon concentration. Diabetes. 1995 Feb;44(2):185–189. doi: 10.2337/diab.44.2.185. [DOI] [PubMed] [Google Scholar]
- Martin W. H., Hoover D. J., Armento S. J., Stock I. A., McPherson R. K., Danley D. E., Stevenson R. W., Barrett E. J., Treadway J. L. Discovery of a human liver glycogen phosphorylase inhibitor that lowers blood glucose in vivo. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1776–1781. doi: 10.1073/pnas.95.4.1776. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Müller C., Assimacopoulos-Jeannet F., Mosimann F., Schneiter P., Riou J. P., Pachiaudi C., Felber J. P., Jéquier E., Jeanrenaud B., Tappy L. Endogenous glucose production, gluconeogenesis and liver glycogen concentration in obese non-diabetic patients. Diabetologia. 1997 Apr;40(4):463–468. doi: 10.1007/s001250050701. [DOI] [PubMed] [Google Scholar]
- Oikonomakos N. G., Kontou M., Zographos S. E., Tsitoura H. S., Johnson L. N., Watson K. A., Mitchell E. P., Fleet G. W., Son J. C., Bichard C. J. The design of potential antidiabetic drugs: experimental investigation of a number of beta-D-glucose analogue inhibitors of glycogen phosphorylase. Eur J Drug Metab Pharmacokinet. 1994 Jul-Sep;19(3):185–192. doi: 10.1007/BF03188920. [DOI] [PubMed] [Google Scholar]
- Oikonomakos N. G., Skamnaki V. T., Tsitsanou K. E., Gavalas N. G., Johnson L. N. A new allosteric site in glycogen phosphorylase b as a target for drug interactions. Structure. 2000 Jun 15;8(6):575–584. doi: 10.1016/s0969-2126(00)00144-1. [DOI] [PubMed] [Google Scholar]
- Pimenta W., Nurjhan N., Jansson P. A., Stumvoll M., Gerich J., Korytkowski M. Glycogen: its mode of formation and contribution to hepatic glucose output in postabsorptive humans. Diabetologia. 1994 Jul;37(7):697–702. doi: 10.1007/BF00417694. [DOI] [PubMed] [Google Scholar]
- Rath V. L., Ammirati M., Danley D. E., Ekstrom J. L., Gibbs E. M., Hynes T. R., Mathiowetz A. M., McPherson R. K., Olson T. V., Treadway J. L. Human liver glycogen phosphorylase inhibitors bind at a new allosteric site. Chem Biol. 2000 Sep;7(9):677–682. doi: 10.1016/s1074-5521(00)00004-1. [DOI] [PubMed] [Google Scholar]
- Rothman D. L., Magnusson I., Katz L. D., Shulman R. G., Shulman G. I. Quantitation of hepatic glycogenolysis and gluconeogenesis in fasting humans with 13C NMR. Science. 1991 Oct 25;254(5031):573–576. doi: 10.1126/science.1948033. [DOI] [PubMed] [Google Scholar]
- Seglen P. O. Preparation of isolated rat liver cells. Methods Cell Biol. 1976;13:29–83. doi: 10.1016/s0091-679x(08)61797-5. [DOI] [PubMed] [Google Scholar]
- Sergienko E. A., Srivastava D. K. A continuous spectrophotometric method for the determination of glycogen phosphorylase-catalyzed reaction in the direction of glycogen synthesis. Anal Biochem. 1994 Sep;221(2):348–355. doi: 10.1006/abio.1994.1424. [DOI] [PubMed] [Google Scholar]
- Stalmans W., Laloux M., Hers H. G. The interaction of liver phosphorylase a with glucose and AMP. Eur J Biochem. 1974 Nov 15;49(2):415–427. doi: 10.1111/j.1432-1033.1974.tb03847.x. [DOI] [PubMed] [Google Scholar]
- Watson K. A., Mitchell E. P., Johnson L. N., Son J. C., Bichard C. J., Orchard M. G., Fleet G. W., Oikonomakos N. G., Leonidas D. D., Kontou M. Design of inhibitors of glycogen phosphorylase: a study of alpha- and beta-C-glucosides and 1-thio-beta-D-glucose compounds. Biochemistry. 1994 May 17;33(19):5745–5758. doi: 10.1021/bi00185a011. [DOI] [PubMed] [Google Scholar]
