Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Oct 15;367(Pt 2):423–431. doi: 10.1042/BJ20020584

Nicotinic acid-adenine dinucleotide phosphate activates the skeletal muscle ryanodine receptor.

Martin Hohenegger 1, Josef Suko 1, Regina Gscheidlinger 1, Helmut Drobny 1, Andreas Zidar 1
PMCID: PMC1222893  PMID: 12102654

Abstract

Calcium is a universal second messenger. The temporal and spatial information that is encoded in Ca(2+)-transients drives processes as diverse as neurotransmitter secretion, axonal outgrowth, immune responses and muscle contraction. Ca(2+)-release from intracellular Ca(2+) stores can be triggered by diffusible second messengers like Ins P (3), cyclic ADP-ribose or nicotinic acid-adenine dinucleotide phosphate (NAADP). A target has not yet been identified for the latter messenger. In the present study we show that nanomolar concentrations of NAADP trigger Ca(2+)-release from skeletal muscle sarcoplasmic reticulum. This was due to a direct action on the Ca(2+)-release channel/ryanodine receptor type-1, since in single channel recordings, NAADP increased the open probability of the purified channel protein. The effects of NAADP on Ca(2+)-release and open probability of the ryanodine receptor occurred over a similar concentration range (EC(50) approximately 30 nM) and were specific because (i) they were blocked by Ruthenium Red and ryanodine, (ii) the precursor of NAADP, NADP, was ineffective at equimolar concentrations, (iii) NAADP did not affect the conductance and reversal potential of the ryanodine receptor. Finally, we also detected an ADP-ribosyl cyclase activity in the sarcoplasmic reticulum fraction of skeletal muscle. This enzyme was not only capable of synthesizing cyclic GDP-ribose but also NAADP, with an activity of 0.25 nmol/mg/min. Thus, we conclude that NAADP is generated in the vicinity of type 1 ryanodine receptor and leads to activation of this ion channel.

Full Text

The Full Text of this article is available as a PDF (241.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aarhus R., Dickey D. M., Graeff R. M., Gee K. R., Walseth T. F., Lee H. C. Activation and inactivation of Ca2+ release by NAADP+. J Biol Chem. 1996 Apr 12;271(15):8513–8516. doi: 10.1074/jbc.271.15.8513. [DOI] [PubMed] [Google Scholar]
  2. Bak J., Billington R. A., Timar G., Dutton A. C., Genazzani A. A. NAADP receptors are present and functional in the heart. Curr Biol. 2001 Jun 26;11(12):987–990. doi: 10.1016/s0960-9822(01)00269-x. [DOI] [PubMed] [Google Scholar]
  3. Berg I., Potter B. V., Mayr G. W., Guse A. H. Nicotinic acid adenine dinucleotide phosphate (NAADP(+)) is an essential regulator of T-lymphocyte Ca(2+)-signaling. J Cell Biol. 2000 Aug 7;150(3):581–588. doi: 10.1083/jcb.150.3.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berridge M. J., Bootman M. D., Lipp P. Calcium--a life and death signal. Nature. 1998 Oct 15;395(6703):645–648. doi: 10.1038/27094. [DOI] [PubMed] [Google Scholar]
  5. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  6. Cancela J. M., Churchill G. C., Galione A. Coordination of agonist-induced Ca2+-signalling patterns by NAADP in pancreatic acinar cells. Nature. 1999 Mar 4;398(6722):74–76. doi: 10.1038/18032. [DOI] [PubMed] [Google Scholar]
  7. Chini Eduardo N., Chini Claudia C. S., Kato Ichiro, Takasawa Shin, Okamoto Hiroshi. CD38 is the major enzyme responsible for synthesis of nicotinic acid-adenine dinucleotide phosphate in mammalian tissues. Biochem J. 2002 Feb 15;362(Pt 1):125–130. doi: 10.1042/0264-6021:3620125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Copello J. A., Qi Y., Jeyakumar L. H., Ogunbunmi E., Fleischer S. Lack of effect of cADP-ribose and NAADP on the activity of skeletal muscle and heart ryanodine receptors. Cell Calcium. 2001 Oct;30(4):269–284. doi: 10.1054/ceca.2001.0235. [DOI] [PubMed] [Google Scholar]
  9. Coronado R., Morrissette J., Sukhareva M., Vaughan D. M. Structure and function of ryanodine receptors. Am J Physiol. 1994 Jun;266(6 Pt 1):C1485–C1504. doi: 10.1152/ajpcell.1994.266.6.C1485. [DOI] [PubMed] [Google Scholar]
  10. Genazzani A. A., Empson R. M., Galione A. Unique inactivation properties of NAADP-sensitive Ca2+ release. J Biol Chem. 1996 May 17;271(20):11599–11602. doi: 10.1074/jbc.271.20.11599. [DOI] [PubMed] [Google Scholar]
  11. Genazzani A. A., Galione A. A Ca2+ release mechanism gated by the novel pyridine nucleotide, NAADP. Trends Pharmacol Sci. 1997 Apr;18(4):108–110. doi: 10.1016/s0165-6147(96)01036-x. [DOI] [PubMed] [Google Scholar]
  12. Graeff R. M., Walseth T. F., Fryxell K., Branton W. D., Lee H. C. Enzymatic synthesis and characterizations of cyclic GDP-ribose. A procedure for distinguishing enzymes with ADP-ribosyl cyclase activity. J Biol Chem. 1994 Dec 2;269(48):30260–30267. [PubMed] [Google Scholar]
  13. Guse A. H. Cyclic ADP-ribose: a novel Ca2+-mobilising second messenger. Cell Signal. 1999 May;11(5):309–316. doi: 10.1016/s0898-6568(99)00004-2. [DOI] [PubMed] [Google Scholar]
  14. Guse A. H., da Silva C. P., Berg I., Skapenko A. L., Weber K., Heyer P., Hohenegger M., Ashamu G. A., Schulze-Koops H., Potter B. V. Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature. 1999 Mar 4;398(6722):70–73. doi: 10.1038/18024. [DOI] [PubMed] [Google Scholar]
  15. Higashida H., Egorova A., Higashida C., Zhong Z. G., Yokoyama S., Noda M., Zhang J. S. Sympathetic potentiation of cyclic ADP-ribose formation in rat cardiac myocytes. J Biol Chem. 1999 Nov 19;274(47):33348–33354. doi: 10.1074/jbc.274.47.33348. [DOI] [PubMed] [Google Scholar]
  16. Hohenegger M., Berg I., Weigl L., Mayr G. W., Potter B. V., Guse A. H. Pharmacological activation of the ryanodine receptor in Jurkat T-lymphocytes. Br J Pharmacol. 1999 Nov;128(6):1235–1240. doi: 10.1038/sj.bjp.0702935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hohenegger M., Matyash M., Poussu K., Herrmann-Frank A., Sarközi S., Lehmann-Horn F., Freissmuth M. Activation of the skeletal muscle ryanodine receptor by suramin and suramin analogs. Mol Pharmacol. 1996 Dec;50(6):1443–1453. [PubMed] [Google Scholar]
  18. Klinger M., Freissmuth M., Nickel P., Stäbler-Schwarzbart M., Kassack M., Suko J., Hohenegger M. Suramin and suramin analogs activate skeletal muscle ryanodine receptor via a calmodulin binding site. Mol Pharmacol. 1999 Mar;55(3):462–472. [PubMed] [Google Scholar]
  19. Lee H. C. Enzymatic functions and structures of CD38 and homologs. Chem Immunol. 2000;75:39–59. doi: 10.1159/000058774. [DOI] [PubMed] [Google Scholar]
  20. Lee H. C. Mechanisms of calcium signaling by cyclic ADP-ribose and NAADP. Physiol Rev. 1997 Oct;77(4):1133–1164. doi: 10.1152/physrev.1997.77.4.1133. [DOI] [PubMed] [Google Scholar]
  21. Lee H. C. Physiological functions of cyclic ADP-ribose and NAADP as calcium messengers. Annu Rev Pharmacol Toxicol. 2001;41:317–345. doi: 10.1146/annurev.pharmtox.41.1.317. [DOI] [PubMed] [Google Scholar]
  22. Meissner G. Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu Rev Physiol. 1994;56:485–508. doi: 10.1146/annurev.ph.56.030194.002413. [DOI] [PubMed] [Google Scholar]
  23. Mojzisová A., Krizanová O., Záciková L., Komínková V., Ondrias K. Effect of nicotinic acid adenine dinucleotide phosphate on ryanodine calcium release channel in heart. Pflugers Arch. 2001 Feb;441(5):674–677. doi: 10.1007/s004240000465. [DOI] [PubMed] [Google Scholar]
  24. Munshi C., Thiel D. J., Mathews I. I., Aarhus R., Walseth T. F., Lee H. C. Characterization of the active site of ADP-ribosyl cyclase. J Biol Chem. 1999 Oct 22;274(43):30770–30777. doi: 10.1074/jbc.274.43.30770. [DOI] [PubMed] [Google Scholar]
  25. Mészáros L. G., Bak J., Chu A. Cyclic ADP-ribose as an endogenous regulator of the non-skeletal type ryanodine receptor Ca2+ channel. Nature. 1993 Jul 1;364(6432):76–79. doi: 10.1038/364076a0. [DOI] [PubMed] [Google Scholar]
  26. Navazio L., Bewell M. A., Siddiqua A., Dickinson G. D., Galione A., Sanders D. Calcium release from the endoplasmic reticulum of higher plants elicited by the NADP metabolite nicotinic acid adenine dinucleotide phosphate. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8693–8698. doi: 10.1073/pnas.140217897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Patel S., Churchill G. C., Galione A. Coordination of Ca2+ signalling by NAADP. Trends Biochem Sci. 2001 Aug;26(8):482–489. doi: 10.1016/s0968-0004(01)01896-5. [DOI] [PubMed] [Google Scholar]
  28. Patel S., Churchill G. C., Sharp T., Galione A. Widespread distribution of binding sites for the novel Ca2+-mobilizing messenger, nicotinic acid adenine dinucleotide phosphate, in the brain. J Biol Chem. 2000 Nov 24;275(47):36495–36497. doi: 10.1074/jbc.C000458200. [DOI] [PubMed] [Google Scholar]
  29. Protasi F., Takekura H., Wang Y., Chen S. R., Meissner G., Allen P. D., Franzini-Armstrong C. RYR1 and RYR3 have different roles in the assembly of calcium release units of skeletal muscle. Biophys J. 2000 Nov;79(5):2494–2508. doi: 10.1016/S0006-3495(00)76491-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rousseau E., Ladine J., Liu Q. Y., Meissner G. Activation of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum by caffeine and related compounds. Arch Biochem Biophys. 1988 Nov 15;267(1):75–86. doi: 10.1016/0003-9861(88)90010-0. [DOI] [PubMed] [Google Scholar]
  31. Schoenmakers T. J., Visser G. J., Flik G., Theuvenet A. P. CHELATOR: an improved method for computing metal ion concentrations in physiological solutions. Biotechniques. 1992 Jun;12(6):870-4, 876-9. [PubMed] [Google Scholar]
  32. Sitsapesan R., Williams A. J. Cyclic ADP-ribose and related compounds activate sheep skeletal sarcoplasmic reticulum Ca2+ release channel. Am J Physiol. 1995 May;268(5 Pt 1):C1235–C1240. doi: 10.1152/ajpcell.1995.268.5.C1235. [DOI] [PubMed] [Google Scholar]
  33. Smith J. S., Coronado R., Meissner G. Sarcoplasmic reticulum contains adenine nucleotide-activated calcium channels. Nature. 1985 Aug 1;316(6027):446–449. doi: 10.1038/316446a0. [DOI] [PubMed] [Google Scholar]
  34. Sorrentino V., Volpe P. Ryanodine receptors: how many, where and why? Trends Pharmacol Sci. 1993 Mar;14(3):98–103. doi: 10.1016/0165-6147(93)90072-r. [DOI] [PubMed] [Google Scholar]
  35. Suko J., Hellmann G., Drobny H. Short- and long-term functional alterations of the skeletal muscle calcium release channel (Ryanodine receptor) by Suramin: apparent dissociation of single channel current recording and [3H]ryanodine binding. Mol Pharmacol. 2001 Mar;59(3):543–556. doi: 10.1124/mol.59.3.543. [DOI] [PubMed] [Google Scholar]
  36. Suko J., Hellmann G. Modification of sulfhydryls of the skeletal muscle calcium release channel by organic mercurial compounds alters Ca2+ affinity of regulatory Ca2+ sites in single channel recordings and [3H]ryanodine binding. Biochim Biophys Acta. 1998 Sep 16;1404(3):435–450. doi: 10.1016/s0167-4889(98)00075-5. [DOI] [PubMed] [Google Scholar]
  37. Wyskovsky W., Hohenegger M., Plank B., Hellmann G., Klein S., Suko J. Activation and inhibition of the calcium-release channel of isolated skeletal muscle heavy sarcoplasmic reticulum. Models of the calcium-release channel. Eur J Biochem. 1990 Dec 12;194(2):549–559. doi: 10.1111/j.1432-1033.1990.tb15651.x. [DOI] [PubMed] [Google Scholar]
  38. Zucchi R., Ronca-Testoni S. The sarcoplasmic reticulum Ca2+ channel/ryanodine receptor: modulation by endogenous effectors, drugs and disease states. Pharmacol Rev. 1997 Mar;49(1):1–51. [PubMed] [Google Scholar]
  39. da Silva C. P., Schweitzer K., Heyer P., Malavasi F., Mayr G. W., Guse A. H. Ectocellular CD38-catalyzed synthesis and intracellular Ca2+-signalling activity of cyclic ADP-ribose in T-lymphocytes are not functionally related. FEBS Lett. 1998 Nov 20;439(3):291–296. doi: 10.1016/s0014-5793(98)01396-9. [DOI] [PubMed] [Google Scholar]
  40. de Toledo F. G., Cheng J., Liang M., Chini E. N., Dousa T. P. ADP-Ribosyl cyclase in rat vascular smooth muscle cells: properties and regulation. Circ Res. 2000 Jun 9;86(11):1153–1159. doi: 10.1161/01.res.86.11.1153. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES