Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Oct 15;367(Pt 2):533–539. doi: 10.1042/BJ20020843

Development of high-affinity ligands and photoaffinity labels for the D-fructose transporter GLUT5.

Jing Yang 1, James Dowden 1, Arnaud Tatibouët 1, Yasumaru Hatanaka 1, Geoffrey D Holman 1
PMCID: PMC1222899  PMID: 12119043

Abstract

The GLUT5 transporter catalyses the specific uptake of D-fructose and can accept this hexose in its furanose and pyranose ring forms. The transporter does not accept fructose epimers and has very limited tolerance of bulky groups substituted at the 2-, 3-, 4- and 5-OH positions [Tatibouët, Yang, Morin and Holman (2000) Bioorg. Med. Chem. 8, 1825-1833]. To further explore whether bulky groups can be tolerated at the primary OH positions, a D-fructose analogue with an allylamine group substitution to replace the 1-OH group was synthesized and was found to be quite well tolerated ( K (i)=27.1 mM). However, this analogue occurs in multiple ring forms. By contrast, 2,5-anhydro-D-mannitol is a symmetrical molecule that occurs only in a furanose ring form in which C-1 and C-6 are equivalent. We have therefore synthesized new 2,5-anhydro-D-mannitol analogues (substituted at the equivalent of the 6-OH of D-fructose) and from studies in Chinese hamster ovary cells expressing GLUT5 cells report that (i) the allylamine derivative of 2,5-anhydro-D-mannitol is well tolerated ( K (i)=2.66 mM); (ii) introduction of a di-nitrophenyl-substituted secondary amine group enhances affinity ( K (i)=0.56 mM); (iii) introduction of amide-linked biotinylated photolabel moieties is possible without loss of affinity relative to 2,5-anhydro-D-mannitol but a small secondary amine spacer between the biotinylated photolabelling moiety and the fructofuranose ring increases affinity (fructose photolabel 2; K (i)=1.16 mM); (iv) introduction of a hydrophilic tartarate spacer between biotin and the diazirine photoreactive groups can be accomplished without reduction in affinity and (v) photoactivation of biotinylated fructose photolabels leads to specific biotin tagging of GLUT5. These data suggest that substitution of a secondary amine group (-NH) to replace the C-6 (or C-1) -OH of 2,5-anhydro-D-mannitol results in compounds of high affinity; the affinity is enhanced over 10-fold compared with D-fructose.

Full Text

The Full Text of this article is available as a PDF (156.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blakemore S. J., Aledo J. C., James J., Campbell F. C., Lucocq J. M., Hundal H. S. The GLUT5 hexose transporter is also localized to the basolateral membrane of the human jejunum. Biochem J. 1995 Jul 1;309(Pt 1):7–12. doi: 10.1042/bj3090007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burant C. F., Flink S., DePaoli A. M., Chen J., Lee W. S., Hediger M. A., Buse J. B., Chang E. B. Small intestine hexose transport in experimental diabetes. Increased transporter mRNA and protein expression in enterocytes. J Clin Invest. 1994 Feb;93(2):578–585. doi: 10.1172/JCI117010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burant C. F., Takeda J., Brot-Laroche E., Bell G. I., Davidson N. O. Fructose transporter in human spermatozoa and small intestine is GLUT5. J Biol Chem. 1992 Jul 25;267(21):14523–14526. [PubMed] [Google Scholar]
  4. Castelló A., Gumá A., Sevilla L., Furriols M., Testar X., Palacín M., Zorzano A. Regulation of GLUT5 gene expression in rat intestinal mucosa: regional distribution, circadian rhythm, perinatal development and effect of diabetes. Biochem J. 1995 Jul 1;309(Pt 1):271–277. doi: 10.1042/bj3090271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clark A. E., Holman G. D. Exofacial photolabelling of the human erythrocyte glucose transporter with an azitrifluoroethylbenzoyl-substituted bismannose. Biochem J. 1990 Aug 1;269(3):615–622. doi: 10.1042/bj2690615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Claustre S., Bringaud F., Azéma L., Baron R., Périé J., Willson M. An easy stereospecific synthesis of 1-amino-2,5-anhydro-1-deoxy-D-mannitol and arylamino derivatives. Carbohydr Res. 1999 Feb 28;315(3-4):339–344. doi: 10.1016/s0008-6215(99)00040-3. [DOI] [PubMed] [Google Scholar]
  7. Corpe C. P., Basaleh M. M., Affleck J., Gould G., Jess T. J., Kellett G. L. The regulation of GLUT5 and GLUT2 activity in the adaptation of intestinal brush-border fructose transport in diabetes. Pflugers Arch. 1996 Jun;432(2):192–201. doi: 10.1007/s004240050124. [DOI] [PubMed] [Google Scholar]
  8. Corpe C. P., Bovelander F. J., Hoekstra J. H., Burant C. F. The small intestinal fructose transporters: site of dietary perception and evidence for diurnal and fructose sensitive control elements. Biochim Biophys Acta. 1998 Apr 24;1402(3):229–238. doi: 10.1016/s0167-4889(97)00155-9. [DOI] [PubMed] [Google Scholar]
  9. Darakhshan F., Hajduch E., Kristiansen S., Richter E. A., Hundal H. S. Biochemical and functional characterization of the GLUT5 fructose transporter in rat skeletal muscle. Biochem J. 1998 Dec 1;336(Pt 2):361–366. doi: 10.1042/bj3360361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dawson P. A., Mychaleckyj J. C., Fossey S. C., Mihic S. J., Craddock A. L., Bowden D. W. Sequence and functional analysis of GLUT10: a glucose transporter in the Type 2 diabetes-linked region of chromosome 20q12-13.1. Mol Genet Metab. 2001 Sep-Oct;74(1-2):186–199. doi: 10.1006/mgme.2001.3212. [DOI] [PubMed] [Google Scholar]
  11. Doege H., Schürmann A., Bahrenberg G., Brauers A., Joost H. G. GLUT8, a novel member of the sugar transport facilitator family with glucose transport activity. J Biol Chem. 2000 May 26;275(21):16275–16280. doi: 10.1074/jbc.275.21.16275. [DOI] [PubMed] [Google Scholar]
  12. Dyer J., Wood I. S., Palejwala A., Ellis A., Shirazi-Beechey S. P. Expression of monosaccharide transporters in intestine of diabetic humans. Am J Physiol Gastrointest Liver Physiol. 2002 Feb;282(2):G241–G248. doi: 10.1152/ajpgi.00310.2001. [DOI] [PubMed] [Google Scholar]
  13. Ferraris R. P. Dietary and developmental regulation of intestinal sugar transport. Biochem J. 2001 Dec 1;360(Pt 2):265–276. doi: 10.1042/0264-6021:3600265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gould G. W., Holman G. D. The glucose transporter family: structure, function and tissue-specific expression. Biochem J. 1993 Oct 15;295(Pt 2):329–341. doi: 10.1042/bj2950329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hajduch E., Darakhshan F., Hundal H. S. Fructose uptake in rat adipocytes: GLUT5 expression and the effects of streptozotocin-induced diabetes. Diabetologia. 1998 Jul;41(7):821–828. doi: 10.1007/s001250050993. [DOI] [PubMed] [Google Scholar]
  16. Harris D. S., Slot J. W., Geuze H. J., James D. E. Polarized distribution of glucose transporter isoforms in Caco-2 cells. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7556–7560. doi: 10.1073/pnas.89.16.7556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hashimoto M., Hatanaka Y., Yang J., Dhesi J., Holman G. D. Synthesis of biotinylated bis(D-glucose) derivatives for glucose transporter photoaffinity labelling. Carbohydr Res. 2001 Mar 22;331(2):119–127. doi: 10.1016/s0008-6215(01)00025-8. [DOI] [PubMed] [Google Scholar]
  18. Hashimoto M., Yang J., Holman G. D. Cell-surface recognition of biotinylated membrane proteins requires very long spacer arms: an example from glucose-transporter probes. Chembiochem. 2001 Jan 8;2(1):52–59. doi: 10.1002/1439-7633(20010105)2:1<52::AID-CBIC52>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  19. Hashimoto Makoto, Yang Jing, Hatanaka Yasumaru, Sadakane Yutaka, Nakagomi Kazuya, Holman Geoffrey David. Improvement in the properties of 3-phenyl-3-trifluoromethyldiazirine based photoreactive bis-glucose probes for GLUT4 following substitution on the phenyl ring. Chem Pharm Bull (Tokyo) 2002 Jul;50(7):1004–1006. doi: 10.1248/cpb.50.1004. [DOI] [PubMed] [Google Scholar]
  20. Helliwell P. A., Richardson M., Affleck J., Kellett G. L. Stimulation of fructose transport across the intestinal brush-border membrane by PMA is mediated by GLUT2 and dynamically regulated by protein kinase C. Biochem J. 2000 Aug 15;350(Pt 1):149–154. [PMC free article] [PubMed] [Google Scholar]
  21. Holman G. D., Karim A. R., Karim B. Photolabeling of erythrocyte and adipocyte hexose transporters using a benzophenone derivative of bis(D-mannose). Biochim Biophys Acta. 1988 Dec 8;946(1):75–84. doi: 10.1016/0005-2736(88)90459-2. [DOI] [PubMed] [Google Scholar]
  22. Holman G. D., Kozka I. J., Clark A. E., Flower C. J., Saltis J., Habberfield A. D., Simpson I. A., Cushman S. W. Cell surface labeling of glucose transporter isoform GLUT4 by bis-mannose photolabel. Correlation with stimulation of glucose transport in rat adipose cells by insulin and phorbol ester. J Biol Chem. 1990 Oct 25;265(30):18172–18179. [PubMed] [Google Scholar]
  23. Ibberson M., Uldry M., Thorens B. GLUTX1, a novel mammalian glucose transporter expressed in the central nervous system and insulin-sensitive tissues. J Biol Chem. 2000 Feb 18;275(7):4607–4612. doi: 10.1074/jbc.275.7.4607. [DOI] [PubMed] [Google Scholar]
  24. Inukai K., Asano T., Katagiri H., Ishihara H., Anai M., Fukushima Y., Tsukuda K., Kikuchi M., Yazaki Y., Oka Y. Cloning and increased expression with fructose feeding of rat jejunal GLUT5. Endocrinology. 1993 Nov;133(5):2009–2014. doi: 10.1210/endo.133.5.8404647. [DOI] [PubMed] [Google Scholar]
  25. Inukai K., Katagiri H., Takata K., Asano T., Anai M., Ishihara H., Nakazaki M., Kikuchi M., Yazaki Y., Oka Y. Characterization of rat GLUT5 and functional analysis of chimeric proteins of GLUT1 glucose transporter and GLUT5 fructose transporter. Endocrinology. 1995 Nov;136(11):4850–4857. doi: 10.1210/endo.136.11.7588216. [DOI] [PubMed] [Google Scholar]
  26. Inukai K., Takata K., Asano T., Katagiri H., Ishihara H., Nakazaki M., Fukushima Y., Yazaki Y., Kikuchi M., Oka Y. Targeting of GLUT1-GLUT5 chimeric proteins in the polarized cell line Caco-2. Mol Endocrinol. 1997 Apr;11(4):442–449. doi: 10.1210/mend.11.4.9873. [DOI] [PubMed] [Google Scholar]
  27. Joost H. G., Thorens B. The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review). Mol Membr Biol. 2001 Oct-Dec;18(4):247–256. doi: 10.1080/09687680110090456. [DOI] [PubMed] [Google Scholar]
  28. Joost Hans-Georg, Bell Graeme I., Best James D., Birnbaum Morris J., Charron Maureen J., Chen Y. T., Doege Holger, James David E., Lodish Harvey F., Moley Kelle H. Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators. Am J Physiol Endocrinol Metab. 2002 Apr;282(4):E974–E976. doi: 10.1152/ajpendo.00407.2001. [DOI] [PubMed] [Google Scholar]
  29. Kayano T., Burant C. F., Fukumoto H., Gould G. W., Fan Y. S., Eddy R. L., Byers M. G., Shows T. B., Seino S., Bell G. I. Human facilitative glucose transporters. Isolation, functional characterization, and gene localization of cDNAs encoding an isoform (GLUT5) expressed in small intestine, kidney, muscle, and adipose tissue and an unusual glucose transporter pseudogene-like sequence (GLUT6). J Biol Chem. 1990 Aug 5;265(22):13276–13282. [PubMed] [Google Scholar]
  30. Koumanov F., Yang J., Jones A. E., Hatanaka Y., Holman G. D. Cell-surface biotinylation of GLUT4 using bis-mannose photolabels. Biochem J. 1998 Mar 15;330(Pt 3):1209–1215. doi: 10.1042/bj3301209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mesonero J., Matosin M., Cambier D., Rodriguez-Yoldi M. J., Brot-Laroche E. Sugar-dependent expression of the fructose transporter GLUT5 in Caco-2 cells. Biochem J. 1995 Dec 15;312(Pt 3):757–762. doi: 10.1042/bj3120757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rand E. B., Depaoli A. M., Davidson N. O., Bell G. I., Burant C. F. Sequence, tissue distribution, and functional characterization of the rat fructose transporter GLUT5. Am J Physiol. 1993 Jun;264(6 Pt 1):G1169–G1176. doi: 10.1152/ajpgi.1993.264.6.G1169. [DOI] [PubMed] [Google Scholar]
  33. Shepherd P. R., Gibbs E. M., Wesslau C., Gould G. W., Kahn B. B. Human small intestine facilitative fructose/glucose transporter (GLUT5) is also present in insulin-responsive tissues and brain. Investigation of biochemical characteristics and translocation. Diabetes. 1992 Oct;41(10):1360–1365. doi: 10.2337/diab.41.10.1360. [DOI] [PubMed] [Google Scholar]
  34. Tatibouët A., Lefoix M., Nadolny J., Martin O. R., Rollin P., Yang J., Holman G. D. D-Fructose-L-sorbose interconversions. Access to 5-thio-D-fructose and interaction with the D-fructose transporter, GLUT5. Carbohydr Res. 2001 Jul 19;333(4):327–334. doi: 10.1016/s0008-6215(01)00153-7. [DOI] [PubMed] [Google Scholar]
  35. Tatibouët A., Yang J., Morin C., Holman G. D. Synthesis and evaluation of fructose analogues as inhibitors of the D-fructose transporter GLUT5. Bioorg Med Chem. 2000 Jul;8(7):1825–1833. doi: 10.1016/s0968-0896(00)00108-5. [DOI] [PubMed] [Google Scholar]
  36. Yang Jing, Hodel Alois, Holman Geoffrey D. Insulin and isoproterenol have opposing roles in the maintenance of cytosol pH and optimal fusion of GLUT4 vesicles with the plasma membrane. J Biol Chem. 2002 Jan 7;277(8):6559–6566. doi: 10.1074/jbc.M108610200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES