Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Oct 15;367(Pt 2):541–548. doi: 10.1042/BJ20011672

Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore.

Gavin P McStay 1, Samantha J Clarke 1, Andrew P Halestrap 1
PMCID: PMC1222909  PMID: 12149099

Abstract

Opening of the mitochondrial permeability transition pore (MPTP) is sensitized to [Ca(2+)] by oxidative stress (diamide) and phenylarsine oxide (PAO). We have proposed that both agents cross-link two thiol groups on the adenine nucleotide translocase (ANT) involved in ADP and cyclophilin-D (CyP-D) binding. Here, we demonstrate that blocking Cys(160) with 80 microM eosin 5-maleimide (EMA) or 500 microM N-ethylmaleimide (NEM) greatly decreased ADP inhibition of the MPTP. The ability of diamide, but not PAO, to block ADP inhibition of the MPTP was antagonized by treatment of mitochondria with 50 microM NEM to alkylate matrix glutathione. Binding of detergent-solubilized ANT to a PAO-affinity matrix was prevented by pre-treatment of mitochondria with diamide, EMA or PAO, but not NEM. EMA binding to the ANT in submitochondrial particles (SMPs) was prevented by pre-treatment of mitochondria with either PAO or diamide, implying that both agents modify Cys(160). Diamide and PAO pre-treatments also inhibited binding of solubilized ANT to a glutathione S-transferase-CyP-D affinity column, both effects being blocked by 100 microM EMA. Intermolecular cross-linking of adjacent ANT molecules via Cys(57) by copper phenanthroline treatment of SMPs was abolished by pre-treatment of mitochondria with diamide and PAO, but not with EMA. Our data suggest that PAO and diamide cause intramolecular cross-linking between Cys(160) and Cys(257) directly (not antagonized by 50 microM NEM) or using glutathione (antagonized by 50 microM NEM) respectively. This cross-linking stabilizes the "c" conformation of the ANT, reducing the reactivity of Cys(57), while enhancing CyP-D binding to the ANT and antagonizing ADP binding. The two effects together greatly sensitize the MPTP to [Ca(2+)].

Full Text

The Full Text of this article is available as a PDF (264.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Nasser I., Crompton M. The reversible Ca2+-induced permeabilization of rat liver mitochondria. Biochem J. 1986 Oct 1;239(1):19–29. doi: 10.1042/bj2390019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aquila H., Eiermann W., Klingenberg M. Incorporation of N-ethylmaleimide into the membrane-bound ADP/ATP translocator. Isolation of the protein labeled with N-[3H]ethylmaleimide. Eur J Biochem. 1982 Feb;122(1):133–139. doi: 10.1111/j.1432-1033.1982.tb05858.x. [DOI] [PubMed] [Google Scholar]
  3. Aquila H., Klingenberg M. The reactivity of -SH groups in the ADP/ATP carrier isolated from beef heart mitochondria. Eur J Biochem. 1982 Feb;122(1):141–145. doi: 10.1111/j.1432-1033.1982.tb05859.x. [DOI] [PubMed] [Google Scholar]
  4. Bernardi P. Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev. 1999 Oct;79(4):1127–1155. doi: 10.1152/physrev.1999.79.4.1127. [DOI] [PubMed] [Google Scholar]
  5. Bernardi P., Petronilli V., Di Lisa F., Forte M. A mitochondrial perspective on cell death. Trends Biochem Sci. 2001 Feb;26(2):112–117. doi: 10.1016/s0968-0004(00)01745-x. [DOI] [PubMed] [Google Scholar]
  6. Bindoli A., Callegaro M. T., Barzon E., Benetti M., Rigobello M. P. Influence of the redox state of pyridine nucleotides on mitochondrial sulfhydryl groups and permeability transition. Arch Biochem Biophys. 1997 Jun 1;342(1):22–28. doi: 10.1006/abbi.1997.9986. [DOI] [PubMed] [Google Scholar]
  7. Chernyak B. V., Bernardi P. The mitochondrial permeability transition pore is modulated by oxidative agents through both pyridine nucleotides and glutathione at two separate sites. Eur J Biochem. 1996 Jun 15;238(3):623–630. doi: 10.1111/j.1432-1033.1996.0623w.x. [DOI] [PubMed] [Google Scholar]
  8. Connern C. P., Halestrap A. P. Chaotropic agents and increased matrix volume enhance binding of mitochondrial cyclophilin to the inner mitochondrial membrane and sensitize the mitochondrial permeability transition to [Ca2+]. Biochemistry. 1996 Jun 25;35(25):8172–8180. doi: 10.1021/bi9525177. [DOI] [PubMed] [Google Scholar]
  9. Connern C. P., Halestrap A. P. Purification and N-terminal sequencing of peptidyl-prolyl cis-trans-isomerase from rat liver mitochondrial matrix reveals the existence of a distinct mitochondrial cyclophilin. Biochem J. 1992 Jun 1;284(Pt 2):381–385. doi: 10.1042/bj2840381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Connern C. P., Halestrap A. P. Recruitment of mitochondrial cyclophilin to the mitochondrial inner membrane under conditions of oxidative stress that enhance the opening of a calcium-sensitive non-specific channel. Biochem J. 1994 Sep 1;302(Pt 2):321–324. doi: 10.1042/bj3020321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Costantini P., Belzacq A. S., Vieira H. L., Larochette N., de Pablo M. A., Zamzami N., Susin S. A., Brenner C., Kroemer G. Oxidation of a critical thiol residue of the adenine nucleotide translocator enforces Bcl-2-independent permeability transition pore opening and apoptosis. Oncogene. 2000 Jan 13;19(2):307–314. doi: 10.1038/sj.onc.1203299. [DOI] [PubMed] [Google Scholar]
  12. Costantini P., Chernyak B. V., Petronilli V., Bernardi P. Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites. J Biol Chem. 1996 Mar 22;271(12):6746–6751. doi: 10.1074/jbc.271.12.6746. [DOI] [PubMed] [Google Scholar]
  13. Costantini P., Chernyak B. V., Petronilli V., Bernardi P. Selective inhibition of the mitochondrial permeability transition pore at the oxidation-reduction sensitive dithiol by monobromobimane. FEBS Lett. 1995 Apr 3;362(2):239–242. doi: 10.1016/0014-5793(95)00256-9. [DOI] [PubMed] [Google Scholar]
  14. Crompton M., Costi A., Hayat L. Evidence for the presence of a reversible Ca2+-dependent pore activated by oxidative stress in heart mitochondria. Biochem J. 1987 Aug 1;245(3):915–918. doi: 10.1042/bj2450915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J. 1999 Jul 15;341(Pt 2):233–249. [PMC free article] [PubMed] [Google Scholar]
  16. Crompton M., Virji S., Ward J. M. Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. Eur J Biochem. 1998 Dec 1;258(2):729–735. doi: 10.1046/j.1432-1327.1998.2580729.x. [DOI] [PubMed] [Google Scholar]
  17. Halestrap A. P., Davidson A. M. Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J. 1990 May 15;268(1):153–160. doi: 10.1042/bj2680153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Halestrap A. P., Doran E., Gillespie J. P., O'Toole A. Mitochondria and cell death. Biochem Soc Trans. 2000 Feb;28(2):170–177. doi: 10.1042/bst0280170. [DOI] [PubMed] [Google Scholar]
  19. Halestrap A. P., Kerr P. M., Javadov S., Woodfield K. Y. Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim Biophys Acta. 1998 Aug 10;1366(1-2):79–94. doi: 10.1016/s0005-2728(98)00122-4. [DOI] [PubMed] [Google Scholar]
  20. Halestrap A. P., Woodfield K. Y., Connern C. P. Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J Biol Chem. 1997 Feb 7;272(6):3346–3354. doi: 10.1074/jbc.272.6.3346. [DOI] [PubMed] [Google Scholar]
  21. Klingenberg M., Winkler E., Huang S. ADP/ATP carrier and uncoupling protein. Methods Enzymol. 1995;260:369–389. doi: 10.1016/0076-6879(95)60151-1. [DOI] [PubMed] [Google Scholar]
  22. Kroemer G., Reed J. C. Mitochondrial control of cell death. Nat Med. 2000 May;6(5):513–519. doi: 10.1038/74994. [DOI] [PubMed] [Google Scholar]
  23. Majima E., Ikawa K., Takeda M., Hashimoto M., Shinohara Y., Terada H. Translocation of loops regulates transport activity of mitochondrial ADP/ATP carrier deduced from formation of a specific intermolecular disulfide bridge catalyzed by copper-o-phenanthroline. J Biol Chem. 1995 Dec 8;270(49):29548–29554. doi: 10.1074/jbc.270.49.29548. [DOI] [PubMed] [Google Scholar]
  24. Majima E., Koike H., Hong Y. M., Shinohara Y., Terada H. Characterization of cysteine residues of mitochondrial ADP/ATP carrier with the SH-reagents eosin 5-maleimide and N-ethylmaleimide. J Biol Chem. 1993 Oct 15;268(29):22181–22187. [PubMed] [Google Scholar]
  25. Majima E., Shinohara Y., Yamaguchi N., Hong Y. M., Terada H. Importance of loops of mitochondrial ADP/ATP carrier for its transport activity deduced from reactivities of its cysteine residues with the sulfhydryl reagent eosin-5-maleimide. Biochemistry. 1994 Aug 16;33(32):9530–9536. doi: 10.1021/bi00198a019. [DOI] [PubMed] [Google Scholar]
  26. Majima E., Yamaguchi N., Chuman H., Shinohara Y., Ishida M., Goto S., Terada H. Binding of the fluorescein derivative eosin Y to the mitochondrial ADP/ATP carrier: characterization of the adenine nucleotide binding site. Biochemistry. 1998 Jan 6;37(1):424–432. doi: 10.1021/bi9710683. [DOI] [PubMed] [Google Scholar]
  27. Majima Eiji, Takeda Masashi, Miki Satomi, Shinohara Yasuo, Terada Hiroshi. Close location of the first loop to the third loop of the mitochondrial ADP/ATP carrier deduced from cross-linking catalyzed by copper-o-phenanthroline of the solubilized carrier with Triton X-100. J Biochem. 2002 Mar;131(3):461–468. doi: 10.1093/oxfordjournals.jbchem.a003122. [DOI] [PubMed] [Google Scholar]
  28. Martinou J. C., Green D. R. Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol. 2001 Jan;2(1):63–67. doi: 10.1038/35048069. [DOI] [PubMed] [Google Scholar]
  29. Owen M. R., Doran E., Halestrap A. P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000 Jun 15;348(Pt 3):607–614. [PMC free article] [PubMed] [Google Scholar]
  30. Poole R. C., Halestrap A. P. Interaction of the erythrocyte lactate transporter (monocarboxylate transporter 1) with an integral 70-kDa membrane glycoprotein of the immunoglobulin superfamily. J Biol Chem. 1997 Jun 6;272(23):14624–14628. doi: 10.1074/jbc.272.23.14624. [DOI] [PubMed] [Google Scholar]
  31. Rigobello M. P., Turcato F., Bindoli A. Inhibition of rat liver mitochondrial permeability transition by respiratory substrates. Arch Biochem Biophys. 1995 May 10;319(1):225–230. doi: 10.1006/abbi.1995.1286. [DOI] [PubMed] [Google Scholar]
  32. Thomas A. P., Halestrap A. P. Identification of the protein responsible for pyruvate transport into rat liver and heart mitochondria by specific labelling with [3H]N-phenylmaleimide. Biochem J. 1981 May 15;196(2):471–479. doi: 10.1042/bj1960471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Torok K., Joshi S. Formation of an intramolecular disulfide bond in the mitochondrial adenine nucleotide translocase. FEBS Lett. 1985 Mar 25;182(2):340–344. doi: 10.1016/0014-5793(85)80329-x. [DOI] [PubMed] [Google Scholar]
  34. Woodfield K., Rück A., Brdiczka D., Halestrap A. P. Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the mitochondrial permeability transition. Biochem J. 1998 Dec 1;336(Pt 2):287–290. doi: 10.1042/bj3360287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wudarczyk J., Debska G., Lenartowicz E. Relation between the activities reducing disulfides and the protection against membrane permeability transition in rat liver mitochondria. Arch Biochem Biophys. 1996 Mar 15;327(2):215–221. doi: 10.1006/abbi.1996.0112. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES