Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Nov 1;367(Pt 3):561–570. doi: 10.1042/BJ20020747

New insights into long-chain fatty acid uptake by heart muscle: a crucial role for fatty acid translocase/CD36.

Joep F F Brinkmann 1, Nada A Abumrad 1, Azeddine Ibrahimi 1, Ger J van der Vusse 1, Jan F C Glatz 1
PMCID: PMC1222912  PMID: 12088505

Abstract

Long-chain fatty acids are an important source of energy for several cell types, in particular for the heart muscle cell. Three different proteins, fatty acid translocase (FAT)/CD36, fatty acid transport protein and plasma membrane fatty acid binding protein, have been identified as possible membrane fatty acid transporters. Much information has been accumulated recently about the fatty acid transporting function of FAT/CD36. Several experimental models to study the influence of altered FAT/CD36 expression on fatty acid homoeostasis have been identified or developed, and underscore the importance of FAT/CD36 for adequate fatty acid transport. These models include the FAT/CD36 null mouse, the spontaneously hypertensive rat and FAT/CD36-deficient humans. The fatty acid transporting role of FAT/CD36 is further demonstrated in mice overexpressing muscle-specific FAT/CD36, and in transgenic mice generated using a genetic-rescue approach. In addition, a wealth of information has been gathered about the mechanisms that regulate FAT/CD36 gene expression and the presence of functional FAT/CD36 on the plasma membrane. Available data also indicate that FAT/CD36 may have an important role in the aetiology of cardiac disease, especially cardiac hypertrophy and diabetic cardiomyopathy. This review discusses our current knowledge of the three candidate fatty acid transporters, the metabolic consequences of alterations in FAT/CD36 levels in different models, and the mechanisms that have been identified for FAT/CD36 regulation.

Full Text

The Full Text of this article is available as a PDF (149.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abumrad N. A., Park J. H., Park C. R. Permeation of long-chain fatty acid into adipocytes. Kinetics, specificity, and evidence for involvement of a membrane protein. J Biol Chem. 1984 Jul 25;259(14):8945–8953. [PubMed] [Google Scholar]
  2. Abumrad N. A., Perkins R. C., Park J. H., Park C. R. Mechanism of long chain fatty acid permeation in the isolated adipocyte. J Biol Chem. 1981 Sep 10;256(17):9183–9191. [PubMed] [Google Scholar]
  3. Abumrad N. A., el-Maghrabi M. R., Amri E. Z., Lopez E., Grimaldi P. A. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J Biol Chem. 1993 Aug 25;268(24):17665–17668. [PubMed] [Google Scholar]
  4. Abumrad N., Coburn C., Ibrahimi A. Membrane proteins implicated in long-chain fatty acid uptake by mammalian cells: CD36, FATP and FABPm. Biochim Biophys Acta. 1999 Oct 18;1441(1):4–13. doi: 10.1016/s1388-1981(99)00137-7. [DOI] [PubMed] [Google Scholar]
  5. Abumrad N., Harmon C., Ibrahimi A. Membrane transport of long-chain fatty acids: evidence for a facilitated process. J Lipid Res. 1998 Dec;39(12):2309–2318. [PubMed] [Google Scholar]
  6. Aitman T. J., Glazier A. M., Wallace C. A., Cooper L. D., Norsworthy P. J., Wahid F. N., Al-Majali K. M., Trembling P. M., Mann C. J., Shoulders C. C. Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet. 1999 Jan;21(1):76–83. doi: 10.1038/5013. [DOI] [PubMed] [Google Scholar]
  7. Aitman T. J., Gotoda T., Evans A. L., Imrie H., Heath K. E., Trembling P. M., Truman H., Wallace C. A., Rahman A., Doré C. Quantitative trait loci for cellular defects in glucose and fatty acid metabolism in hypertensive rats. Nat Genet. 1997 Jun;16(2):197–201. doi: 10.1038/ng0697-197. [DOI] [PubMed] [Google Scholar]
  8. Amri E. Z., Ailhaud G., Grimaldi P. Regulation of adipose cell differentiation. II. Kinetics of induction of the aP2 gene by fatty acids and modulation by dexamethasone. J Lipid Res. 1991 Sep;32(9):1457–1463. [PubMed] [Google Scholar]
  9. Amri E. Z., Bertrand B., Ailhaud G., Grimaldi P. Regulation of adipose cell differentiation. I. Fatty acids are inducers of the aP2 gene expression. J Lipid Res. 1991 Sep;32(9):1449–1456. [PubMed] [Google Scholar]
  10. Amri E. Z., Bonino F., Ailhaud G., Abumrad N. A., Grimaldi P. A. Cloning of a protein that mediates transcriptional effects of fatty acids in preadipocytes. Homology to peroxisome proliferator-activated receptors. J Biol Chem. 1995 Feb 3;270(5):2367–2371. doi: 10.1074/jbc.270.5.2367. [DOI] [PubMed] [Google Scholar]
  11. Anderson M. P., Welsh M. J. Fatty acids inhibit apical membrane chloride channels in airway epithelia. Proc Natl Acad Sci U S A. 1990 Sep;87(18):7334–7338. doi: 10.1073/pnas.87.18.7334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Asch A. S., Barnwell J., Silverstein R. L., Nachman R. L. Isolation of the thrombospondin membrane receptor. J Clin Invest. 1987 Apr;79(4):1054–1061. doi: 10.1172/JCI112918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Asch A. S., Liu I., Briccetti F. M., Barnwell J. W., Kwakye-Berko F., Dokun A., Goldberger J., Pernambuco M. Analysis of CD36 binding domains: ligand specificity controlled by dephosphorylation of an ectodomain. Science. 1993 Nov 26;262(5138):1436–1440. doi: 10.1126/science.7504322. [DOI] [PubMed] [Google Scholar]
  14. Ashe M. P., De Long S. K., Sachs A. B. Glucose depletion rapidly inhibits translation initiation in yeast. Mol Biol Cell. 2000 Mar;11(3):833–848. doi: 10.1091/mbc.11.3.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Berger J., Truppe C., Neumann H., Forss-Petter S. A novel relative of the very-long-chain acyl-CoA synthetase and fatty acid transporter protein genes with a distinct expression pattern. Biochem Biophys Res Commun. 1998 Jun 18;247(2):255–260. doi: 10.1006/bbrc.1998.8770. [DOI] [PubMed] [Google Scholar]
  16. Berger J., Truppe C., Neumann H., Forss-Petter S. cDNA cloning and mRNA distribution of a mouse very long-chain acyl-CoA synthetase. FEBS Lett. 1998 Mar 27;425(2):305–309. doi: 10.1016/s0014-5793(98)00255-5. [DOI] [PubMed] [Google Scholar]
  17. Berk P. D., Wada H., Horio Y., Potter B. J., Sorrentino D., Zhou S. L., Isola L. M., Stump D., Kiang C. L., Thung S. Plasma membrane fatty acid-binding protein and mitochondrial glutamic-oxaloacetic transaminase of rat liver are related. Proc Natl Acad Sci U S A. 1990 May;87(9):3484–3488. doi: 10.1073/pnas.87.9.3484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Berk P. D., Zhou S. L., Kiang C. L., Stump D., Bradbury M., Isola L. M. Uptake of long chain free fatty acids is selectively up-regulated in adipocytes of Zucker rats with genetic obesity and non-insulin-dependent diabetes mellitus. J Biol Chem. 1997 Mar 28;272(13):8830–8835. doi: 10.1074/jbc.272.13.8830. [DOI] [PubMed] [Google Scholar]
  19. Binas B., Danneberg H., McWhir J., Mullins L., Clark A. J. Requirement for the heart-type fatty acid binding protein in cardiac fatty acid utilization. FASEB J. 1999 May;13(8):805–812. doi: 10.1096/fasebj.13.8.805. [DOI] [PubMed] [Google Scholar]
  20. Bonen A., Luiken J. J., Arumugam Y., Glatz J. F., Tandon N. N. Acute regulation of fatty acid uptake involves the cellular redistribution of fatty acid translocase. J Biol Chem. 2000 May 12;275(19):14501–14508. doi: 10.1074/jbc.275.19.14501. [DOI] [PubMed] [Google Scholar]
  21. Bouvier M., Loisel T. P., Hebert T. Dynamic regulation of G-protein coupled receptor palmitoylation: potential role in receptor function. Biochem Soc Trans. 1995 Aug;23(3):577–581. doi: 10.1042/bst0230577. [DOI] [PubMed] [Google Scholar]
  22. Choi J. Y., Martin C. E. The Saccharomyces cerevisiae FAT1 gene encodes an acyl-CoA synthetase that is required for maintenance of very long chain fatty acid levels. J Biol Chem. 1999 Feb 19;274(8):4671–4683. doi: 10.1074/jbc.274.8.4671. [DOI] [PubMed] [Google Scholar]
  23. Civelek V. N., Hamilton J. A., Tornheim K., Kelly K. L., Corkey B. E. Intracellular pH in adipocytes: effects of free fatty acid diffusion across the plasma membrane, lipolytic agonists, and insulin. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10139–10144. doi: 10.1073/pnas.93.19.10139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Coburn C. T., Knapp F. F., Jr, Febbraio M., Beets A. L., Silverstein R. L., Abumrad N. A. Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J Biol Chem. 2000 Oct 20;275(42):32523–32529. doi: 10.1074/jbc.M003826200. [DOI] [PubMed] [Google Scholar]
  25. Coe N. R., Smith A. J., Frohnert B. I., Watkins P. A., Bernlohr D. A. The fatty acid transport protein (FATP1) is a very long chain acyl-CoA synthetase. J Biol Chem. 1999 Dec 17;274(51):36300–36304. doi: 10.1074/jbc.274.51.36300. [DOI] [PubMed] [Google Scholar]
  26. Collison M., Glazier A. M., Graham D., Morton J. J., Dominiczak M. H., Aitman T. J., Connell J. M., Gould G. W., Dominiczak A. F. Cd36 and molecular mechanisms of insulin resistance in the stroke-prone spontaneously hypertensive rat. Diabetes. 2000 Dec;49(12):2222–2226. doi: 10.2337/diabetes.49.12.2222. [DOI] [PubMed] [Google Scholar]
  27. Dirusso C. C., Connell E. J., Faergeman N. J., Knudsen J., Hansen J. K., Black P. N. Murine FATP alleviates growth and biochemical deficiencies of yeast fat1Delta strains. Eur J Biochem. 2000 Jul;267(14):4422–4433. doi: 10.1046/j.1432-1327.2000.01489.x. [DOI] [PubMed] [Google Scholar]
  28. Distel R. J., Robinson G. S., Spiegelman B. M. Fatty acid regulation of gene expression. Transcriptional and post-transcriptional mechanisms. J Biol Chem. 1992 Mar 25;267(9):5937–5941. [PubMed] [Google Scholar]
  29. Faergeman N. J., DiRusso C. C., Elberger A., Knudsen J., Black P. N. Disruption of the Saccharomyces cerevisiae homologue to the murine fatty acid transport protein impairs uptake and growth on long-chain fatty acids. J Biol Chem. 1997 Mar 28;272(13):8531–8538. doi: 10.1074/jbc.272.13.8531. [DOI] [PubMed] [Google Scholar]
  30. Faergeman N. J., Knudsen J. Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling. Biochem J. 1997 Apr 1;323(Pt 1):1–12. doi: 10.1042/bj3230001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Febbraio M., Abumrad N. A., Hajjar D. P., Sharma K., Cheng W., Pearce S. F., Silverstein R. L. A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism. J Biol Chem. 1999 Jul 2;274(27):19055–19062. doi: 10.1074/jbc.274.27.19055. [DOI] [PubMed] [Google Scholar]
  32. Finck Brian N., Lehman John J., Leone Teresa C., Welch Michael J., Bennett Michael J., Kovacs Attila, Han Xianlin, Gross Richard W., Kozak Ray, Lopaschuk Gary D. The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest. 2002 Jan;109(1):121–130. doi: 10.1172/JCI14080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Frohnert B. I., Hui T. Y., Bernlohr D. A. Identification of a functional peroxisome proliferator-responsive element in the murine fatty acid transport protein gene. J Biol Chem. 1999 Feb 12;274(7):3970–3977. doi: 10.1074/jbc.274.7.3970. [DOI] [PubMed] [Google Scholar]
  34. Galli C., Marangoni F. Recent advances in the biology of n-6 fatty acids. Nutrition. 1997 Nov-Dec;13(11-12):978–985. doi: 10.1016/s0899-9007(97)00341-9. [DOI] [PubMed] [Google Scholar]
  35. Glatz J. F., Börchers T., Spener F., van der Vusse G. J. Fatty acids in cell signalling: modulation by lipid binding proteins. Prostaglandins Leukot Essent Fatty Acids. 1995 Feb-Mar;52(2-3):121–127. doi: 10.1016/0952-3278(95)90010-1. [DOI] [PubMed] [Google Scholar]
  36. Glatz J. F., van Nieuwenhoven F. A., Luiken J. J., Schaap F. G., van der Vusse G. J. Role of membrane-associated and cytoplasmic fatty acid-binding proteins in cellular fatty acid metabolism. Prostaglandins Leukot Essent Fatty Acids. 1997 Oct;57(4-5):373–378. doi: 10.1016/s0952-3278(97)90413-0. [DOI] [PubMed] [Google Scholar]
  37. Goodyear L. J., Kahn B. B. Exercise, glucose transport, and insulin sensitivity. Annu Rev Med. 1998;49:235–261. doi: 10.1146/annurev.med.49.1.235. [DOI] [PubMed] [Google Scholar]
  38. Gotoda T., Iizuka Y., Kato N., Osuga J., Bihoreau M. T., Murakami T., Yamori Y., Shimano H., Ishibashi S., Yamada N. Absence of Cd36 mutation in the original spontaneously hypertensive rats with insulin resistance. Nat Genet. 1999 Jul;22(3):226–228. doi: 10.1038/10285. [DOI] [PubMed] [Google Scholar]
  39. Greenwalt D. E., Lipsky R. H., Ockenhouse C. F., Ikeda H., Tandon N. N., Jamieson G. A. Membrane glycoprotein CD36: a review of its roles in adherence, signal transduction, and transfusion medicine. Blood. 1992 Sep 1;80(5):1105–1115. [PubMed] [Google Scholar]
  40. Greenwalt D. E., Scheck S. H., Rhinehart-Jones T. Heart CD36 expression is increased in murine models of diabetes and in mice fed a high fat diet. J Clin Invest. 1995 Sep;96(3):1382–1388. doi: 10.1172/JCI118173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Griffin E., Re A., Hamel N., Fu C., Bush H., McCaffrey T., Asch A. S. A link between diabetes and atherosclerosis: Glucose regulates expression of CD36 at the level of translation. Nat Med. 2001 Jul;7(7):840–846. doi: 10.1038/89969. [DOI] [PubMed] [Google Scholar]
  42. Hajri T., Ibrahimi A., Coburn C. T., Knapp F. F., Jr, Kurtz T., Pravenec M., Abumrad N. A. Defective fatty acid uptake in the spontaneously hypertensive rat is a primary determinant of altered glucose metabolism, hyperinsulinemia, and myocardial hypertrophy. J Biol Chem. 2001 Apr 25;276(26):23661–23666. doi: 10.1074/jbc.M100942200. [DOI] [PubMed] [Google Scholar]
  43. Harmon C. M., Abumrad N. A. Binding of sulfosuccinimidyl fatty acids to adipocyte membrane proteins: isolation and amino-terminal sequence of an 88-kD protein implicated in transport of long-chain fatty acids. J Membr Biol. 1993 Apr;133(1):43–49. doi: 10.1007/BF00231876. [DOI] [PubMed] [Google Scholar]
  44. Herrmann T., Buchkremer F., Gosch I., Hall A. M., Bernlohr D. A., Stremmel W. Mouse fatty acid transport protein 4 (FATP4): characterization of the gene and functional assessment as a very long chain acyl-CoA synthetase. Gene. 2001 May 30;270(1-2):31–40. doi: 10.1016/s0378-1119(01)00489-9. [DOI] [PubMed] [Google Scholar]
  45. Hirsch D., Stahl A., Lodish H. F. A family of fatty acid transporters conserved from mycobacterium to man. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8625–8629. doi: 10.1073/pnas.95.15.8625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Huang M. M., Bolen J. B., Barnwell J. W., Shattil S. J., Brugge J. S. Membrane glycoprotein IV (CD36) is physically associated with the Fyn, Lyn, and Yes protein-tyrosine kinases in human platelets. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7844–7848. doi: 10.1073/pnas.88.17.7844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Hui T. Y., Frohnert B. I., Smith A. J., Schaffer J. E., Bernlohr D. A. Characterization of the murine fatty acid transport protein gene and its insulin response sequence. J Biol Chem. 1998 Oct 16;273(42):27420–27429. doi: 10.1074/jbc.273.42.27420. [DOI] [PubMed] [Google Scholar]
  48. Hörl W. H., Schaefer R. M., Heidland A. Abnormalities of carbohydrate metabolism in spontaneously hypertensive rats. Klin Wochenschr. 1988 Sep 15;66(18):924–927. doi: 10.1007/BF01728956. [DOI] [PubMed] [Google Scholar]
  49. Ibrahimi A., Bonen A., Blinn W. D., Hajri T., Li X., Zhong K., Cameron R., Abumrad N. A. Muscle-specific overexpression of FAT/CD36 enhances fatty acid oxidation by contracting muscle, reduces plasma triglycerides and fatty acids, and increases plasma glucose and insulin. J Biol Chem. 1999 Sep 17;274(38):26761–26766. doi: 10.1074/jbc.274.38.26761. [DOI] [PubMed] [Google Scholar]
  50. Ibrahimi A., Sfeir Z., Magharaie H., Amri E. Z., Grimaldi P., Abumrad N. A. Expression of the CD36 homolog (FAT) in fibroblast cells: effects on fatty acid transport. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2646–2651. doi: 10.1073/pnas.93.7.2646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Iynedjian P. B., Pilot P. R., Nouspikel T., Milburn J. L., Quaade C., Hughes S., Ucla C., Newgard C. B. Differential expression and regulation of the glucokinase gene in liver and islets of Langerhans. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7838–7842. doi: 10.1073/pnas.86.20.7838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Jackson C. S., Zlatkine P., Bano C., Kabouridis P., Mehul B., Parenti M., Milligan G., Ley S. C., Magee A. I. Dynamic protein acylation and the regulation of localization and function of signal-transducing proteins. Biochem Soc Trans. 1995 Aug;23(3):568–571. doi: 10.1042/bst0230568. [DOI] [PubMed] [Google Scholar]
  53. Kamp F., Hamilton J. A., Kamp F., Westerhoff H. V., Hamilton J. A. Movement of fatty acids, fatty acid analogues, and bile acids across phospholipid bilayers. Biochemistry. 1993 Oct 19;32(41):11074–11086. doi: 10.1021/bi00092a017. [DOI] [PubMed] [Google Scholar]
  54. Kiens B., Kristiansen S., Jensen P., Richter E. A., Turcotte L. P. Membrane associated fatty acid binding protein (FABPpm) in human skeletal muscle is increased by endurance training. Biochem Biophys Res Commun. 1997 Feb 13;231(2):463–465. doi: 10.1006/bbrc.1997.6118. [DOI] [PubMed] [Google Scholar]
  55. Lee K., Godeau B., Fromont P., Plonquet A., Debili N., Bachir D., Reviron D., Gourin J., Fernandez E., Galactéros F. CD36 deficiency is frequent and can cause platelet immunization in Africans. Transfusion. 1999 Aug;39(8):873–879. doi: 10.1046/j.1537-2995.1999.39080873.x. [DOI] [PubMed] [Google Scholar]
  56. Leone T. C., Weinheimer C. J., Kelly D. P. A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response: the PPARalpha-null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7473–7478. doi: 10.1073/pnas.96.13.7473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Lewis S. E., Listenberger L. L., Ory D. S., Schaffer J. E. Membrane topology of the murine fatty acid transport protein 1. J Biol Chem. 2001 Jul 24;276(40):37042–37050. doi: 10.1074/jbc.M105556200. [DOI] [PubMed] [Google Scholar]
  58. Luiken J. J., Arumugam Y., Dyck D. J., Bell R. C., Pelsers M. M., Turcotte L. P., Tandon N. N., Glatz J. F., Bonen A. Increased rates of fatty acid uptake and plasmalemmal fatty acid transporters in obese Zucker rats. J Biol Chem. 2001 Aug 14;276(44):40567–40573. doi: 10.1074/jbc.M100052200. [DOI] [PubMed] [Google Scholar]
  59. Luiken J. J., Turcotte L. P., Bonen A. Protein-mediated palmitate uptake and expression of fatty acid transport proteins in heart giant vesicles. J Lipid Res. 1999 Jun;40(6):1007–1016. [PubMed] [Google Scholar]
  60. Luiken J. J., van Nieuwenhoven F. A., America G., van der Vusse G. J., Glatz J. F. Uptake and metabolism of palmitate by isolated cardiac myocytes from adult rats: involvement of sarcolemmal proteins. J Lipid Res. 1997 Apr;38(4):745–758. [PubMed] [Google Scholar]
  61. Luiken Joost J. F. P., Dyck David J., Han Xiao-Xia, Tandon Narendra N., Arumugam Yoga, Glatz Jan F. C., Bonen Arend. Insulin induces the translocation of the fatty acid transporter FAT/CD36 to the plasma membrane. Am J Physiol Endocrinol Metab. 2002 Feb;282(2):E491–E495. doi: 10.1152/ajpendo.00419.2001. [DOI] [PubMed] [Google Scholar]
  62. Mackie B. G., Dudley G. A., Kaciuba-Uscilko H., Terjung R. L. Uptake of chylomicron triglycerides by contracting skeletal muscle in rats. J Appl Physiol Respir Environ Exerc Physiol. 1980 Nov;49(5):851–855. doi: 10.1152/jappl.1980.49.5.851. [DOI] [PubMed] [Google Scholar]
  63. Man M. Z., Hui T. Y., Schaffer J. E., Lodish H. F., Bernlohr D. A. Regulation of the murine adipocyte fatty acid transporter gene by insulin. Mol Endocrinol. 1996 Aug;10(8):1021–1028. doi: 10.1210/mend.10.8.8843418. [DOI] [PubMed] [Google Scholar]
  64. Martin G., Schoonjans K., Lefebvre A. M., Staels B., Auwerx J. Coordinate regulation of the expression of the fatty acid transport protein and acyl-CoA synthetase genes by PPARalpha and PPARgamma activators. J Biol Chem. 1997 Nov 7;272(45):28210–28217. doi: 10.1074/jbc.272.45.28210. [DOI] [PubMed] [Google Scholar]
  65. Martin W. H., 3rd, Dalsky G. P., Hurley B. F., Matthews D. E., Bier D. M., Hagberg J. M., Rogers M. A., King D. S., Holloszy J. O. Effect of endurance training on plasma free fatty acid turnover and oxidation during exercise. Am J Physiol. 1993 Nov;265(5 Pt 1):E708–E714. doi: 10.1152/ajpendo.1993.265.5.E708. [DOI] [PubMed] [Google Scholar]
  66. Mondon C. E., Reaven G. M. Evidence of abnormalities of insulin metabolism in rats with spontaneous hypertension. Metabolism. 1988 Apr;37(4):303–305. doi: 10.1016/0026-0495(88)90127-8. [DOI] [PubMed] [Google Scholar]
  67. Motojima K., Passilly P., Peters J. M., Gonzalez F. J., Latruffe N. Expression of putative fatty acid transporter genes are regulated by peroxisome proliferator-activated receptor alpha and gamma activators in a tissue- and inducer-specific manner. J Biol Chem. 1998 Jul 3;273(27):16710–16714. doi: 10.1074/jbc.273.27.16710. [DOI] [PubMed] [Google Scholar]
  68. Mundy D. I. Protein palmitoylation in membrane trafficking. Biochem Soc Trans. 1995 Aug;23(3):572–576. doi: 10.1042/bst0230572. [DOI] [PubMed] [Google Scholar]
  69. Neely J. R., Rovetto M. J., Oram J. F. Myocardial utilization of carbohydrate and lipids. Prog Cardiovasc Dis. 1972 Nov-Dec;15(3):289–329. doi: 10.1016/0033-0620(72)90029-1. [DOI] [PubMed] [Google Scholar]
  70. Okamoto F., Tanaka T., Sohmiya K., Kawamura K. CD36 abnormality and impaired myocardial long-chain fatty acid uptake in patients with hypertrophic cardiomyopathy. Jpn Circ J. 1998 Jul;62(7):499–504. doi: 10.1253/jcj.62.499. [DOI] [PubMed] [Google Scholar]
  71. Ordway R. W., Singer J. J., Walsh J. V., Jr Direct regulation of ion channels by fatty acids. Trends Neurosci. 1991 Mar;14(3):96–100. doi: 10.1016/0166-2236(91)90069-7. [DOI] [PubMed] [Google Scholar]
  72. Pelsers M. M., Lutgerink J. T., Nieuwenhoven F. A., Tandon N. N., van der Vusse G. J., Arends J. W., Hoogenboom H. R., Glatz J. F. A sensitive immunoassay for rat fatty acid translocase (CD36) using phage antibodies selected on cell transfectants: abundant presence of fatty acid translocase/CD36 in cardiac and red skeletal muscle and up-regulation in diabetes. Biochem J. 1999 Feb 1;337(Pt 3):407–414. [PMC free article] [PubMed] [Google Scholar]
  73. Poirier H., Degrace P., Niot I., Bernard A., Besnard P. Localization and regulation of the putative membrane fatty-acid transporter (FAT) in the small intestine. Comparison with fatty acid-binding proteins (FABP). Eur J Biochem. 1996 Jun 1;238(2):368–373. doi: 10.1111/j.1432-1033.1996.0368z.x. [DOI] [PubMed] [Google Scholar]
  74. Pravenec M., Landa V., Zidek V., Musilova A., Kren V., Kazdova L., Aitman T. J., Glazier A. M., Ibrahimi A., Abumrad N. A. Transgenic rescue of defective Cd36 ameliorates insulin resistance in spontaneously hypertensive rats. Nat Genet. 2001 Feb;27(2):156–158. doi: 10.1038/84777. [DOI] [PubMed] [Google Scholar]
  75. Pravenec M., Zidek V., Simakova M., Kren V., Krenova D., Horky K., Jachymova M., Mikova B., Kazdova L., Aitman T. J. Genetics of Cd36 and the clustering of multiple cardiovascular risk factors in spontaneous hypertension. J Clin Invest. 1999 Jun;103(12):1651–1657. doi: 10.1172/JCI6691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Rao R. H. Insulin resistance in spontaneously hypertensive rats. Difference in interpretation based on insulin infusion rate or on plasma insulin in glucose clamp studies. Diabetes. 1993 Sep;42(9):1364–1371. doi: 10.2337/diab.42.9.1364. [DOI] [PubMed] [Google Scholar]
  77. Reaven G. M., Chang H., Hoffman B. B., Azhar S. Resistance to insulin-stimulated glucose uptake in adipocytes isolated from spontaneously hypertensive rats. Diabetes. 1989 Sep;38(9):1155–1160. doi: 10.2337/diab.38.9.1155. [DOI] [PubMed] [Google Scholar]
  78. Reaven G. M., Chang H. Relationship between blood pressure, plasma insulin and triglyceride concentration, and insulin action in spontaneous hypertensive and Wistar-Kyoto rats. Am J Hypertens. 1991 Jan;4(1 Pt 1):34–38. doi: 10.1093/ajh/4.1.34. [DOI] [PubMed] [Google Scholar]
  79. Reaven G. M. Insulin resistance, hyperinsulinemia, hypertriglyceridemia, and hypertension. Parallels between human disease and rodent models. Diabetes Care. 1991 Mar;14(3):195–202. doi: 10.2337/diacare.14.3.195. [DOI] [PubMed] [Google Scholar]
  80. Sato Osamu, Kuriki Chikako, Fukui Yuka, Motojima Kiyoto. Dual promoter structure of mouse and human fatty acid translocase/CD36 genes and unique transcriptional activation by peroxisome proliferator-activated receptor alpha and gamma ligands. J Biol Chem. 2002 Feb 26;277(18):15703–15711. doi: 10.1074/jbc.M110158200. [DOI] [PubMed] [Google Scholar]
  81. Schaap F. G., Binas B., Danneberg H., van der Vusse G. J., Glatz J. F. Impaired long-chain fatty acid utilization by cardiac myocytes isolated from mice lacking the heart-type fatty acid binding protein gene. Circ Res. 1999 Aug 20;85(4):329–337. doi: 10.1161/01.res.85.4.329. [DOI] [PubMed] [Google Scholar]
  82. Schaap F. G., Hamers L., Van der Vusse G. J., Glatz J. F. Molecular cloning of fatty acid-transport protein cDNA from rat. Biochim Biophys Acta. 1997 Oct 9;1354(1):29–34. doi: 10.1016/s0167-4781(97)00121-8. [DOI] [PubMed] [Google Scholar]
  83. Schaffer J. E., Lodish H. F. Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell. 1994 Nov 4;79(3):427–436. doi: 10.1016/0092-8674(94)90252-6. [DOI] [PubMed] [Google Scholar]
  84. Schaffer Jean E. Fatty acid transport: the roads taken. Am J Physiol Endocrinol Metab. 2002 Feb;282(2):E239–E246. doi: 10.1152/ajpendo.00462.2001. [DOI] [PubMed] [Google Scholar]
  85. Semenkovich C. F., Coleman T., Fiedorek F. T., Jr Human fatty acid synthase mRNA: tissue distribution, genetic mapping, and kinetics of decay after glucose deprivation. J Lipid Res. 1995 Jul;36(7):1507–1521. [PubMed] [Google Scholar]
  86. Sfeir Z., Ibrahimi A., Amri E., Grimaldi P., Abumrad N. Regulation of FAT/CD36 gene expression: further evidence in support of a role of the protein in fatty acid binding/transport. Prostaglandins Leukot Essent Fatty Acids. 1997 Jul;57(1):17–21. doi: 10.1016/s0952-3278(97)90487-7. [DOI] [PubMed] [Google Scholar]
  87. Skelly R. H., Schuppin G. T., Ishihara H., Oka Y., Rhodes C. J. Glucose-regulated translational control of proinsulin biosynthesis with that of the proinsulin endopeptidases PC2 and PC3 in the insulin-producing MIN6 cell line. Diabetes. 1996 Jan;45(1):37–43. doi: 10.2337/diab.45.1.37. [DOI] [PubMed] [Google Scholar]
  88. Sorrentino D., Robinson R. B., Kiang C. L., Berk P. D. At physiologic albumin/oleate concentrations oleate uptake by isolated hepatocytes, cardiac myocytes, and adipocytes is a saturable function of the unbound oleate concentration. Uptake kinetics are consistent with the conventional theory. J Clin Invest. 1989 Oct;84(4):1325–1333. doi: 10.1172/JCI114301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Spector A. A. Plasma lipid transport. Clin Physiol Biochem. 1984;2(2-3):123–134. [PubMed] [Google Scholar]
  90. Spitsberg V. L., Matitashvili E., Gorewit R. C. Association and coexpression of fatty-acid-binding protein and glycoprotein CD36 in the bovine mammary gland. Eur J Biochem. 1995 Jun 15;230(3):872–878. doi: 10.1111/j.1432-1033.1995.tb20630.x. [DOI] [PubMed] [Google Scholar]
  91. Stahl Andreas, Evans James G., Pattel Shraddha, Hirsch David, Lodish Harvey F. Insulin causes fatty acid transport protein translocation and enhanced fatty acid uptake in adipocytes. Dev Cell. 2002 Apr;2(4):477–488. doi: 10.1016/s1534-5807(02)00143-0. [DOI] [PubMed] [Google Scholar]
  92. Storch J., Thumser A. E. The fatty acid transport function of fatty acid-binding proteins. Biochim Biophys Acta. 2000 Jun 26;1486(1):28–44. doi: 10.1016/s1388-1981(00)00046-9. [DOI] [PubMed] [Google Scholar]
  93. Stremmel W., Strohmeyer G., Borchard F., Kochwa S., Berk P. D. Isolation and partial characterization of a fatty acid binding protein in rat liver plasma membranes. Proc Natl Acad Sci U S A. 1985 Jan;82(1):4–8. doi: 10.1073/pnas.82.1.4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Stuhlsatz-Krouper S. M., Bennett N. E., Schaffer J. E. Molecular aspects of fatty acid transport: mutations in the IYTSGTTGXPK motif impair fatty acid transport protein function. Prostaglandins Leukot Essent Fatty Acids. 1999 May-Jun;60(5-6):285–289. doi: 10.1016/s0952-3278(99)80001-5. [DOI] [PubMed] [Google Scholar]
  95. Stuhlsatz-Krouper S. M., Bennett N. E., Schaffer J. E. Substitution of alanine for serine 250 in the murine fatty acid transport protein inhibits long chain fatty acid transport. J Biol Chem. 1998 Oct 30;273(44):28642–28650. doi: 10.1074/jbc.273.44.28642. [DOI] [PubMed] [Google Scholar]
  96. Stump D. D., Zhou S. L., Berk P. D. Comparison of plasma membrane FABP and mitochondrial isoform of aspartate aminotransferase from rat liver. Am J Physiol. 1993 Nov;265(5 Pt 1):G894–G902. doi: 10.1152/ajpgi.1993.265.5.G894. [DOI] [PubMed] [Google Scholar]
  97. Suzuki K., Kono T. Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site. Proc Natl Acad Sci U S A. 1980 May;77(5):2542–2545. doi: 10.1073/pnas.77.5.2542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Tanaka T., Nakata T., Oka T., Ogawa T., Okamoto F., Kusaka Y., Sohmiya K., Shimamoto K., Itakura K. Defect in human myocardial long-chain fatty acid uptake is caused by FAT/CD36 mutations. J Lipid Res. 2001 May;42(5):751–759. [PubMed] [Google Scholar]
  99. Teboul L., Febbraio M., Gaillard D., Amri E. Z., Silverstein R., Grimaldi P. A. Structural and functional characterization of the mouse fatty acid translocase promoter: activation during adipose differentiation. Biochem J. 2001 Dec 1;360(Pt 2):305–312. doi: 10.1042/0264-6021:3600305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Turcotte L. P., Richter E. A., Kiens B. Increased plasma FFA uptake and oxidation during prolonged exercise in trained vs. untrained humans. Am J Physiol. 1992 Jun;262(6 Pt 1):E791–E799. doi: 10.1152/ajpendo.1992.262.6.E791. [DOI] [PubMed] [Google Scholar]
  101. Turcotte L. P., Srivastava A. K., Chiasson J. L. Fasting increases plasma membrane fatty acid-binding protein (FABP(PM)) in red skeletal muscle. Mol Cell Biochem. 1997 Jan;166(1-2):153–158. doi: 10.1023/a:1006846907394. [DOI] [PubMed] [Google Scholar]
  102. Uchiyama A., Aoyama T., Kamijo K., Uchida Y., Kondo N., Orii T., Hashimoto T. Molecular cloning of cDNA encoding rat very long-chain acyl-CoA synthetase. J Biol Chem. 1996 Nov 29;271(48):30360–30365. doi: 10.1074/jbc.271.48.30360. [DOI] [PubMed] [Google Scholar]
  103. Utsunomiya A., Owada Y., Yoshimoto T., Kondo H. Localization of mRNA for fatty acid transport protein in developing and mature brain of rats. Brain Res Mol Brain Res. 1997 Jun;46(1-2):217–222. doi: 10.1016/s0169-328x(96)00303-8. [DOI] [PubMed] [Google Scholar]
  104. Van Nieuwenhoven F. A., Luiken J. J., De Jong Y. F., Grimaldi P. A., Van der Vusse G. J., Glatz J. F. Stable transfection of fatty acid translocase (CD36) in a rat heart muscle cell line (H9c2). J Lipid Res. 1998 Oct;39(10):2039–2047. [PubMed] [Google Scholar]
  105. Van Nieuwenhoven F. A., Verstijnen C. P., Abumrad N. A., Willemsen P. H., Van Eys G. J., Van der Vusse G. J., Glatz J. F. Putative membrane fatty acid translocase and cytoplasmic fatty acid-binding protein are co-expressed in rat heart and skeletal muscles. Biochem Biophys Res Commun. 1995 Feb 15;207(2):747–752. doi: 10.1006/bbrc.1995.1250. [DOI] [PubMed] [Google Scholar]
  106. Van Nieuwenhoven F. A., Willemsen P. H., Van der Vusse G. J., Glatz J. F. Co-expression in rat heart and skeletal muscle of four genes coding for proteins implicated in long-chain fatty acid uptake. Int J Biochem Cell Biol. 1999 Mar-Apr;31(3-4):489–498. doi: 10.1016/s1357-2725(98)00122-8. [DOI] [PubMed] [Google Scholar]
  107. Watkins P. A., Lu J. F., Steinberg S. J., Gould S. J., Smith K. D., Braiterman L. T. Disruption of the Saccharomyces cerevisiae FAT1 gene decreases very long-chain fatty acyl-CoA synthetase activity and elevates intracellular very long-chain fatty acid concentrations. J Biol Chem. 1998 Jul 17;273(29):18210–18219. doi: 10.1074/jbc.273.29.18210. [DOI] [PubMed] [Google Scholar]
  108. Yamashita A., Sugiura T., Waku K. Acyltransferases and transacylases involved in fatty acid remodeling of phospholipids and metabolism of bioactive lipids in mammalian cells. J Biochem. 1997 Jul;122(1):1–16. doi: 10.1093/oxfordjournals.jbchem.a021715. [DOI] [PubMed] [Google Scholar]
  109. Zhou S. L., Stump D., Isola L., Berk P. D. Constitutive expression of a saturable transport system for non-esterified fatty acids in Xenopus laevis oocytes. Biochem J. 1994 Jan 15;297(Pt 2):315–319. doi: 10.1042/bj2970315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Zhou S. L., Stump D., Sorrentino D., Potter B. J., Berk P. D. Adipocyte differentiation of 3T3-L1 cells involves augmented expression of a 43-kDa plasma membrane fatty acid-binding protein. J Biol Chem. 1992 Jul 15;267(20):14456–14461. [PubMed] [Google Scholar]
  111. Zou Zhiying, DiRusso Concetta C., Ctrnacta Vlasta, Black Paul N. Fatty acid transport in Saccharomyces cerevisiae. Directed mutagenesis of FAT1 distinguishes the biochemical activities associated with Fat1p. J Biol Chem. 2002 Jun 6;277(34):31062–31071. doi: 10.1074/jbc.M205034200. [DOI] [PubMed] [Google Scholar]
  112. van der Vusse G. J., Glatz J. F., Stam H. C., Reneman R. S. Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev. 1992 Oct;72(4):881–940. doi: 10.1152/physrev.1992.72.4.881. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES