Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Nov 1;367(Pt 3):881–887. doi: 10.1042/BJ20020432

Effects of cAMP modulators on long-chain fatty-acid uptake and utilization by electrically stimulated rat cardiac myocytes.

J J F P Luiken 1, J Willems 1, S L M Coort 1, W A Coumans 1, A Bonen 1, G J Van Der Vusse 1, J F C Glatz 1
PMCID: PMC1222913  PMID: 12093365

Abstract

Recently, we established that cellular contractions increase long-chain fatty-acid (FA) uptake by cardiac myocytes. This increase is dependent on the transport function of an 88 kDa membrane FA transporter, FA translocase (FAT/CD36), and, in analogy to skeletal muscle, is likely to involve its translocation from an intracellular pool to the sarcolemma. In the present study, we investigated whether cAMP-dependent signalling is involved in this translocation process. Isoproterenol, dibutyryl-cAMP and the phosphodiesterase (PDE) inhibitor, amrinone, which markedly raised the intracellular cAMP level, did not affect cellular FA uptake, but influenced the fate of intracellular FAs by directing these to mitochondrial oxidation in electrostimulated cardiac myocytes. The PDE inhibitors 3-isobutyl-1-methylxanthine, milrinone and dipyridamole each significantly stimulated FA uptake as well as intracellular cAMP levels, but these effects were quantitatively unrelated. The stimulatory effects of these PDE inhibitors were antagonized by sulpho- N -succinimidylpalmitate, indicating the involvement of FAT/CD36, albeit that the different PDE inhibitors use different molecular mechanisms to stimulate FAT/CD36-mediated FA uptake. Notably, 3-isobutyl-1-methylxanthine and milrinone increased the intrinsic activity of FAT/CD36, possibly through its covalent modification, and dipyridamole induces translocation of FAT/CD36 to the sarcolemma. Elevation of intracellular cGMP, but not of cAMP, by the PDE inhibitor zaprinast did not have any effect on FA uptake and metabolism by cardiac myocytes. The stimulatory effects of PDE inhibitors on cardiac FA uptake should be considered when applying these agents in clinical medicine.

Full Text

The Full Text of this article is available as a PDF (184.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdel-aleem S., El-Guindy N., Sallam T. I., Hughes G. C., Lowe J. E. Stimulation of long-chain fatty acid uptake by dipyridamole in isolated myocytes. J Cardiovasc Pharmacol. 1999 Jan;33(1):43–48. doi: 10.1097/00005344-199901000-00007. [DOI] [PubMed] [Google Scholar]
  2. Abdel-aleem S., Frangakis C. Stimulation of fatty acid oxidation by phosphodiesterase III inhibitors in rat myocytes. J Cardiovasc Pharmacol. 1991 Aug;18(2):293–297. doi: 10.1097/00005344-199108000-00017. [DOI] [PubMed] [Google Scholar]
  3. Abumrad N., Coburn C., Ibrahimi A. Membrane proteins implicated in long-chain fatty acid uptake by mammalian cells: CD36, FATP and FABPm. Biochim Biophys Acta. 1999 Oct 18;1441(1):4–13. doi: 10.1016/s1388-1981(99)00137-7. [DOI] [PubMed] [Google Scholar]
  4. Bode D. C., Kanter J. R., Brunton L. L. Cellular distribution of phosphodiesterase isoforms in rat cardiac tissue. Circ Res. 1991 Apr;68(4):1070–1079. doi: 10.1161/01.res.68.4.1070. [DOI] [PubMed] [Google Scholar]
  5. Bonen A., Luiken J. J., Arumugam Y., Glatz J. F., Tandon N. N. Acute regulation of fatty acid uptake involves the cellular redistribution of fatty acid translocase. J Biol Chem. 2000 May 12;275(19):14501–14508. doi: 10.1074/jbc.275.19.14501. [DOI] [PubMed] [Google Scholar]
  6. Bonen A., Luiken J. J., Liu S., Dyck D. J., Kiens B., Kristiansen S., Turcotte L. P., Van Der Vusse G. J., Glatz J. F. Palmitate transport and fatty acid transporters in red and white muscles. Am J Physiol. 1998 Sep;275(3 Pt 1):E471–E478. doi: 10.1152/ajpendo.1998.275.3.E471. [DOI] [PubMed] [Google Scholar]
  7. Cone J., Wang S., Tandon N., Fong M., Sun B., Sakurai K., Yoshitake M., Kambayashi J., Liu Y. Comparison of the effects of cilostazol and milrinone on intracellular cAMP levels and cellular function in platelets and cardiac cells. J Cardiovasc Pharmacol. 1999 Oct;34(4):497–504. doi: 10.1097/00005344-199910000-00004. [DOI] [PubMed] [Google Scholar]
  8. Endoh M., Yamashita S., Taira N. Positive inotropic effect of amrinone in relation to cyclic nucleotide metabolism in the canine ventricular muscle. J Pharmacol Exp Ther. 1982 Jun;221(3):775–783. [PubMed] [Google Scholar]
  9. Endoh M., Yanagisawa T., Taira N., Blinks J. R. Effects of new inotropic agents on cyclic nucleotide metabolism and calcium transients in canine ventricular muscle. Circulation. 1986 Mar;73(3 Pt 2):III117–III133. [PubMed] [Google Scholar]
  10. Fischer Y., Rose H., Kammermeier H. Highly insulin-responsive isolated rat heart muscle cells yielded by a modified isolation method. Life Sci. 1991;49(23):1679–1688. doi: 10.1016/0024-3205(91)90310-8. [DOI] [PubMed] [Google Scholar]
  11. Fischer Y., Thomas J., Rösen P., Kammermeier H. Action of metformin on glucose transport and glucose transporter GLUT1 and GLUT4 in heart muscle cells from healthy and diabetic rats. Endocrinology. 1995 Feb;136(2):412–420. doi: 10.1210/endo.136.2.7835271. [DOI] [PubMed] [Google Scholar]
  12. Gibbs C. L., Gibson W. R. Isoprenaline, propranolol, and the energy output of rabbit cardiac muscle. Cardiovasc Res. 1972 Sep;6(5):508–515. doi: 10.1093/cvr/6.5.508. [DOI] [PubMed] [Google Scholar]
  13. Gillespie P. G., Beavo J. A. Inhibition and stimulation of photoreceptor phosphodiesterases by dipyridamole and M&B 22,948. Mol Pharmacol. 1989 Nov;36(5):773–781. [PubMed] [Google Scholar]
  14. Gong G. X., Weiss H. R., Tse J., Scholz P. M. Cyclic GMP decreases cardiac myocyte oxygen consumption to a greater extent under conditions of increased metabolism. J Cardiovasc Pharmacol. 1997 Oct;30(4):537–543. doi: 10.1097/00005344-199710000-00021. [DOI] [PubMed] [Google Scholar]
  15. Gutstein D. E., Flemmal K., Bruce E., Travers K. E., Gwathmey J. K., Ransil B. J., Markis J. E., Grossman W., Morgan J. P. Decreased inotropic but relatively preserved relaxation response to cyclic adenosine monophosphate-dependent agents in myopathic human myocardium. J Card Fail. 1996 Dec;2(4):285–292. doi: 10.1016/s1071-9164(96)80015-7. [DOI] [PubMed] [Google Scholar]
  16. Harmon C. M., Luce P., Beth A. H., Abumrad N. A. Labeling of adipocyte membranes by sulfo-N-succinimidyl derivatives of long-chain fatty acids: inhibition of fatty acid transport. J Membr Biol. 1991 May;121(3):261–268. doi: 10.1007/BF01951559. [DOI] [PubMed] [Google Scholar]
  17. Hatmi M., Gavaret J. M., Elalamy I., Vargaftig B. B., Jacquemin C. Evidence for cAMP-dependent platelet ectoprotein kinase activity that phosphorylates platelet glycoprotein IV (CD36). J Biol Chem. 1996 Oct 4;271(40):24776–24780. doi: 10.1074/jbc.271.40.24776. [DOI] [PubMed] [Google Scholar]
  18. Hetman J. M., Soderling S. H., Glavas N. A., Beavo J. A. Cloning and characterization of PDE7B, a cAMP-specific phosphodiesterase. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):472–476. doi: 10.1073/pnas.97.1.472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Howell R. E., Jenkins L. P., Fielding L. E., Grimes D. Inhibition of antigen-induced pulmonary eosinophilia and neutrophilia by selective inhibitors of phosphodiesterase types 3 or 4 in Brown Norway rats. Pulm Pharmacol. 1995 Apr-Jun;8(2-3):83–89. doi: 10.1006/pulp.1995.1010. [DOI] [PubMed] [Google Scholar]
  20. Hussain M., Orchard C. H. Sarcoplasmic reticulum Ca2+ content, L-type Ca2+ current and the Ca2+ transient in rat myocytes during beta-adrenergic stimulation. J Physiol. 1997 Dec 1;505(Pt 2):385–402. doi: 10.1111/j.1469-7793.1997.385bb.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jiang Z. Y., Costachescu T., Derouin M., Blaise G. Treatment of pulmonary hypertension during surgery with nitric oxide and vasodilators. Can J Anaesth. 2000 Jun;47(6):552–555. doi: 10.1007/BF03018946. [DOI] [PubMed] [Google Scholar]
  22. Katano Y., Endoh M. Cyclic AMP metabolism in intact rat ventricular cardiac myocytes: interaction of carbachol with isoproterenol and 3-isobutyl-1-methylxanthine. Mol Cell Biochem. 1993 Feb 17;119(1-2):195–201. doi: 10.1007/BF00926871. [DOI] [PubMed] [Google Scholar]
  23. Kumar A., Kosuri R., Kandula P., Dimou C., Allen J., Parrillo J. E. Effects of epinephrine and amrinone on contractility and cyclic adenosine monophosphate generation of tumor necrosis factor alpha-exposed cardiac myocytes. Crit Care Med. 1999 Feb;27(2):286–292. doi: 10.1097/00003246-199902000-00032. [DOI] [PubMed] [Google Scholar]
  24. Luiken J. J., Glatz J. F., Bonen A. Fatty acid transport proteins facilitate fatty acid uptake in skeletal muscle. Can J Appl Physiol. 2000 Oct;25(5):333–352. [PubMed] [Google Scholar]
  25. Luiken J. J., Schaap F. G., van Nieuwenhoven F. A., van der Vusse G. J., Bonen A., Glatz J. F. Cellular fatty acid transport in heart and skeletal muscle as facilitated by proteins. Lipids. 1999;34 (Suppl):S169–S175. doi: 10.1007/BF02562278. [DOI] [PubMed] [Google Scholar]
  26. Luiken J. J., Turcotte L. P., Bonen A. Protein-mediated palmitate uptake and expression of fatty acid transport proteins in heart giant vesicles. J Lipid Res. 1999 Jun;40(6):1007–1016. [PubMed] [Google Scholar]
  27. Luiken J. J., Willems J., van der Vusse G. J., Glatz J. F. Electrostimulation enhances FAT/CD36-mediated long-chain fatty acid uptake by isolated rat cardiac myocytes. Am J Physiol Endocrinol Metab. 2001 Oct;281(4):E704–E712. doi: 10.1152/ajpendo.2001.281.4.E704. [DOI] [PubMed] [Google Scholar]
  28. Mehra M. R., Ventura H. O., Kapoor C., Stapleton D. D., Zimmerman D., Smart F. W. Safety and clinical utility of long-term intravenous milrinone in advanced heart failure. Am J Cardiol. 1997 Jul 1;80(1):61–64. doi: 10.1016/s0002-9149(97)00284-1. [DOI] [PubMed] [Google Scholar]
  29. Mills D. C., Smith J. B. The influence on platelet aggregation of drugs that affect the accumulation of adenosine 3':5'-cyclic monophosphate in platelets. Biochem J. 1971 Jan;121(2):185–196. doi: 10.1042/bj1210185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Packer M., Carver J. R., Rodeheffer R. J., Ivanhoe R. J., DiBianco R., Zeldis S. M., Hendrix G. H., Bommer W. J., Elkayam U., Kukin M. L. Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group. N Engl J Med. 1991 Nov 21;325(21):1468–1475. doi: 10.1056/NEJM199111213252103. [DOI] [PubMed] [Google Scholar]
  31. Ploug T., Wojtaszewski J., Kristiansen S., Hespel P., Galbo H., Richter E. A. Glucose transport and transporters in muscle giant vesicles: differential effects of insulin and contractions. Am J Physiol. 1993 Feb;264(2 Pt 1):E270–E278. doi: 10.1152/ajpendo.1993.264.2.E270. [DOI] [PubMed] [Google Scholar]
  32. Rodrigues B., Cam M. C., McNeill J. H. Metabolic disturbances in diabetic cardiomyopathy. Mol Cell Biochem. 1998 Mar;180(1-2):53–57. [PubMed] [Google Scholar]
  33. Rose H., Strotmann K. H., Pöpping S., Fischer Y., Kulsch D., Kammermeier H. Simultaneous measurement of contraction and oxygen consumption in cardiac myocytes. Am J Physiol. 1991 Oct;261(4 Pt 2):H1329–H1334. doi: 10.1152/ajpheart.1991.261.4.H1329. [DOI] [PubMed] [Google Scholar]
  34. Staros J. V. N-hydroxysulfosuccinimide active esters: bis(N-hydroxysulfosuccinimide) esters of two dicarboxylic acids are hydrophilic, membrane-impermeant, protein cross-linkers. Biochemistry. 1982 Aug 17;21(17):3950–3955. doi: 10.1021/bi00260a008. [DOI] [PubMed] [Google Scholar]
  35. Suga H., Hisano R., Goto Y., Yamada O., Igarashi Y. Effect of positive inotropic agents on the relation between oxygen consumption and systolic pressure volume area in canine left ventricle. Circ Res. 1983 Sep;53(3):306–318. doi: 10.1161/01.res.53.3.306. [DOI] [PubMed] [Google Scholar]
  36. Thadani U., Roden D. M. FDA Panel report: January 1998. Circulation. 1998 Jun 16;97(23):2295–2296. doi: 10.1161/01.cir.97.23.2295. [DOI] [PubMed] [Google Scholar]
  37. Van Nieuwenhoven F. A., Willemsen P. H., Van der Vusse G. J., Glatz J. F. Co-expression in rat heart and skeletal muscle of four genes coding for proteins implicated in long-chain fatty acid uptake. Int J Biochem Cell Biol. 1999 Mar-Apr;31(3-4):489–498. doi: 10.1016/s1357-2725(98)00122-8. [DOI] [PubMed] [Google Scholar]
  38. Weiss H. R., Gong G. X., Straznicka M., Yan L., Tse J., Scholz P. M. Cyclic GMP and cyclic AMP induced changes in control and hypertrophic cardiac myocyte function interact through cyclic GMP affected cyclic-AMP phosphodiesterases. Can J Physiol Pharmacol. 1999 Jun;77(6):422–431. [PubMed] [Google Scholar]
  39. van der Vusse G. J., van Bilsen M., Glatz J. F. Cardiac fatty acid uptake and transport in health and disease. Cardiovasc Res. 2000 Jan 14;45(2):279–293. doi: 10.1016/s0008-6363(99)00263-1. [DOI] [PubMed] [Google Scholar]
  40. von der Leyen H. Phosphodiesterase inhibition by new cardiotonic agents: mechanism of action and possible clinical relevance in the therapy of congestive heart failure. Klin Wochenschr. 1989 Jun 15;67(12):605–615. doi: 10.1007/BF01718141. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES