Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Nov 1;367(Pt 3):833–839. doi: 10.1042/BJ20020663

Urokinase upregulates matrix metalloproteinase-9 expression in THP-1 monocytes via gene transcription and protein synthesis.

Mikhail Menshikov 1, Eugenia Elizarova 1, Karina Plakida 1, Angelika Timofeeva 1, Georgy Khaspekov 1, Robert Beabealashvilli 1, Alex Bobik 1, Vsevolod Tkachuk 1
PMCID: PMC1222914  PMID: 12117412

Abstract

Urokinase-type plasminogen activator (uPA) is suggested to exert its proliferatory, migratory and invasive action through binding with its membrane receptor, promoting pericellular proteolysis and mediating cell signal transduction. One of the possible actions of urokinase can be related to the regulation of activity and/or the expression of proteolytic enzymes participating in extracellular matrix degradation. In the present study, the role of uPA in regulating matrix metalloproteinase (MMP) expression and release by the monocyte cell line THP-1 was investigated. Recombinant uPA induced the release of MMP9/gelatinase B, as detected by zymography and Western blotting, and this release was abolished by actinomycin D and cycloheximide (inhibitors of DNA transcription and protein synthesis) and partially suppressed by monensin (an inhibitor of secretion). Proteolytically inactive urokinase with substitution of His(204) for Gln was able to reproduce about 70% of the effect induced by the wild-type recombinant uPA. The reverse transcription-PCR and Northern blot data indicated that the action of r-uPA on THP-1 cells resulted in formation of MMP9 mRNA, which depended on time, within 6-48 h, of the cell incubation with r-uPA. These results suggest that urokinase upregulates MMP9 expression in monocytes via MMP9 gene transcription and protein biosynthesis.

Full Text

The Full Text of this article is available as a PDF (240.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguirre-Ghiso J. A., Liu D., Mignatti A., Kovalski K., Ossowski L. Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol Biol Cell. 2001 Apr;12(4):863–879. doi: 10.1091/mbc.12.4.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Behrendt N., Rønne E., Danø K. The structure and function of the urokinase receptor, a membrane protein governing plasminogen activation on the cell surface. Biol Chem Hoppe Seyler. 1995 May;376(5):269–279. [PubMed] [Google Scholar]
  3. Bohuslav J., Horejsí V., Hansmann C., Stöckl J., Weidle U. H., Majdic O., Bartke I., Knapp W., Stockinger H. Urokinase plasminogen activator receptor, beta 2-integrins, and Src-kinases within a single receptor complex of human monocytes. J Exp Med. 1995 Apr 1;181(4):1381–1390. doi: 10.1084/jem.181.4.1381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chenchik A. A., Diachenko L. B., Beabealashvilli R. S. Analysis of poly(A)+RNA patterns in human tissues. FEBS Lett. 1993 Apr 19;321(1):98–101. doi: 10.1016/0014-5793(93)80629-9. [DOI] [PubMed] [Google Scholar]
  5. Chevet E., Lemaître G., Katinka M. D. Low concentrations of tetramethylammonium chloride increase yield and specificity of PCR. Nucleic Acids Res. 1995 Aug 25;23(16):3343–3344. doi: 10.1093/nar/23.16.3343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davies M. J., Richardson P. D., Woolf N., Katz D. R., Mann J. Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J. 1993 May;69(5):377–381. doi: 10.1136/hrt.69.5.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dumler I., Stepanova V., Jerke U., Mayboroda O. A., Vogel F., Bouvet P., Tkachuk V., Haller H., Gulba D. C. Urokinase-induced mitogenesis is mediated by casein kinase 2 and nucleolin. Curr Biol. 1999 Dec 16;9(24):1468–1476. doi: 10.1016/s0960-9822(00)80116-5. [DOI] [PubMed] [Google Scholar]
  8. Farina A. R., Coppa A., Tiberio A., Tacconelli A., Turco A., Colletta G., Gulino A., Mackay A. R. Transforming growth factor-beta1 enhances the invasiveness of human MDA-MB-231 breast cancer cells by up-regulating urokinase activity. Int J Cancer. 1998 Mar 2;75(5):721–730. doi: 10.1002/(sici)1097-0215(19980302)75:5<721::aid-ijc10>3.0.co;2-9. [DOI] [PubMed] [Google Scholar]
  9. Galis Z. S., Sukhova G. K., Lark M. W., Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest. 1994 Dec;94(6):2493–2503. doi: 10.1172/JCI117619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hahn-Dantona E., Ramos-DeSimone N., Sipley J., Nagase H., French D. L., Quigley J. P. Activation of proMMP-9 by a plasmin/MMP-3 cascade in a tumor cell model. Regulation by tissue inhibitors of metalloproteinases. Ann N Y Acad Sci. 1999 Jun 30;878:372–387. doi: 10.1111/j.1749-6632.1999.tb07696.x. [DOI] [PubMed] [Google Scholar]
  11. Inuzuka K., Ogata Y., Nagase H., Shirouzu K. Significance of coexpression of urokinase-type plasminogen activator, and matrix metalloproteinase 3 (stromelysin) and 9 (gelatinase B) in colorectal carcinoma. J Surg Res. 2000 Oct;93(2):211–218. doi: 10.1006/jsre.2000.5952. [DOI] [PubMed] [Google Scholar]
  12. Kanse S. M., Benzakour O., Kanthou C., Kost C., Lijnen H. R., Preissner K. T. Induction of vascular SMC proliferation by urokinase indicates a novel mechanism of action in vasoproliferative disorders. Arterioscler Thromb Vasc Biol. 1997 Nov;17(11):2848–2854. doi: 10.1161/01.atv.17.11.2848. [DOI] [PubMed] [Google Scholar]
  13. Khan K. M., Falcone D. J. Role of laminin in matrix induction of macrophage urokinase-type plasminogen activator and 92-kDa metalloproteinase expression. J Biol Chem. 1997 Mar 28;272(13):8270–8275. doi: 10.1074/jbc.272.13.8270. [DOI] [PubMed] [Google Scholar]
  14. Kirchheimer J. C., Wojta J., Christ G., Binder B. R. Proliferation of a human epidermal tumor cell line stimulated by urokinase. FASEB J. 1987 Aug;1(2):125–128. doi: 10.1096/fasebj.1.2.3038646. [DOI] [PubMed] [Google Scholar]
  15. Konakova M., Hucho F., Schleuning W. D. Downstream targets of urokinase-type plasminogen-activator-mediated signal transduction. Eur J Biochem. 1998 Apr 15;253(2):421–429. doi: 10.1046/j.1432-1327.1998.2530421.x. [DOI] [PubMed] [Google Scholar]
  16. Lijnen H. R., Collen D. Mechanisms of physiological fibrinolysis. Baillieres Clin Haematol. 1995 Jun;8(2):277–290. doi: 10.1016/s0950-3536(05)80268-9. [DOI] [PubMed] [Google Scholar]
  17. Lijnen H. R., Zamarron C., Blaber M., Winkler M. E., Collen D. Activation of plasminogen by pro-urokinase. I. Mechanism. J Biol Chem. 1986 Jan 25;261(3):1253–1258. [PubMed] [Google Scholar]
  18. Massova I., Kotra L. P., Fridman R., Mobashery S. Matrix metalloproteinases: structures, evolution, and diversification. FASEB J. 1998 Sep;12(12):1075–1095. [PubMed] [Google Scholar]
  19. Menshikov M. Y., Elizarova E. P., Kudryashova E., Timofeyeva A. V., Khaspekov Y., Beabealashvilly R. S., Bobik A. Plasmin-independent gelatinase B (matrix metalloproteinase-9) release by monocytes under the influence of urokinase. Biochemistry (Mosc) 2001 Sep;66(9):954–959. doi: 10.1023/a:1012305206245. [DOI] [PubMed] [Google Scholar]
  20. Mukhina S., Stepanova V., Traktouev D., Poliakov A., Beabealashvilly R., Gursky Y., Minashkin M., Shevelev A., Tkachuk V. The chemotactic action of urokinase on smooth muscle cells is dependent on its kringle domain. Characterization of interactions and contribution to chemotaxis. J Biol Chem. 2000 Jun 2;275(22):16450–16458. doi: 10.1074/jbc.M909080199. [DOI] [PubMed] [Google Scholar]
  21. Nguyen D. H., Webb D. J., Catling A. D., Song Q., Dhakephalkar A., Weber M. J., Ravichandran K. S., Gonias S. L. Urokinase-type plasminogen activator stimulates the Ras/Extracellular signal-regulated kinase (ERK) signaling pathway and MCF-7 cell migration by a mechanism that requires focal adhesion kinase, Src, and Shc. Rapid dissociation of GRB2/Sps-Shc complex is associated with the transient phosphorylation of ERK in urokinase-treated cells. J Biol Chem. 2000 Jun 23;275(25):19382–19388. doi: 10.1074/jbc.M909575199. [DOI] [PubMed] [Google Scholar]
  22. Poliakov A. A., Mukhina S. A., Traktouev D. O., Bibilashvily R. S., Gursky Y. G., Minashkin M. M., Stepanova V. V., Tkachuk V. A. Chemotactic effect of urokinase plasminogen activator: a major role for mechanisms independent of its proteolytic or growth factor domains. J Recept Signal Transduct Res. 1999 Nov;19(6):939–951. doi: 10.3109/10799899909038433. [DOI] [PubMed] [Google Scholar]
  23. Ramos-DeSimone N., Hahn-Dantona E., Sipley J., Nagase H., French D. L., Quigley J. P. Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion. J Biol Chem. 1999 May 7;274(19):13066–13076. doi: 10.1074/jbc.274.19.13066. [DOI] [PubMed] [Google Scholar]
  24. Rao N. K., Shi G. P., Chapman H. A. Urokinase receptor is a multifunctional protein: influence of receptor occupancy on macrophage gene expression. J Clin Invest. 1995 Jul;96(1):465–474. doi: 10.1172/JCI118057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Raza S. L., Nehring L. C., Shapiro S. D., Cornelius L. A. Proteinase-activated receptor-1 regulation of macrophage elastase (MMP-12) secretion by serine proteinases. J Biol Chem. 2000 Dec 29;275(52):41243–41250. doi: 10.1074/jbc.M005788200. [DOI] [PubMed] [Google Scholar]
  26. Rosenthal E. L., Johnson T. M., Allen E. D., Apel I. J., Punturieri A., Weiss S. J. Role of the plasminogen activator and matrix metalloproteinase systems in epidermal growth factor- and scatter factor-stimulated invasion of carcinoma cells. Cancer Res. 1998 Nov 15;58(22):5221–5230. [PubMed] [Google Scholar]
  27. Saarialho-Kere U. K., Welgus H. G., Parks W. C. Distinct mechanisms regulate interstitial collagenase and 92-kDa gelatinase expression in human monocytic-like cells exposed to bacterial endotoxin. J Biol Chem. 1993 Aug 15;268(23):17354–17361. [PubMed] [Google Scholar]
  28. Savochkina L. P., Skrypina N. A., Timofeeva A. V., Bibilashvili R. Sh. Kolichestvennoe opredelenie malykh kontsentratsii kDNK s ispol'zovaniem polimeraznoi tsepnoi reaktsii i amplikona v kachestve vnutrennego standarta. Mol Biol (Mosk) 1996 Jul-Aug;30(4):786–800. [PubMed] [Google Scholar]
  29. Senior R. M., Connolly N. L., Cury J. D., Welgus H. G., Campbell E. J. Elastin degradation by human alveolar macrophages. A prominent role of metalloproteinase activity. Am Rev Respir Dis. 1989 May;139(5):1251–1256. doi: 10.1164/ajrccm/139.5.1251. [DOI] [PubMed] [Google Scholar]
  30. Stepanova V., Bobik A., Bibilashvily R., Belogurov A., Rybalkin I., Domogatsky S., Little P. J., Goncharova E., Tkachuk V. Urokinase plasminogen activator induces smooth muscle cell migration: key role of growth factor-like domain. FEBS Lett. 1997 Sep 8;414(2):471–474. doi: 10.1016/s0014-5793(97)00993-9. [DOI] [PubMed] [Google Scholar]
  31. Tartakoff A. M. Perturbation of vesicular traffic with the carboxylic ionophore monensin. Cell. 1983 Apr;32(4):1026–1028. doi: 10.1016/0092-8674(83)90286-6. [DOI] [PubMed] [Google Scholar]
  32. Wahl S. M., Allen J. B., Weeks B. S., Wong H. L., Klotman P. E. Transforming growth factor beta enhances integrin expression and type IV collagenase secretion in human monocytes. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4577–4581. doi: 10.1073/pnas.90.10.4577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Watanabe H., Nakanishi I., Yamashita K., Hayakawa T., Okada Y. Matrix metalloproteinase-9 (92 kDa gelatinase/type IV collagenase) from U937 monoblastoid cells: correlation with cellular invasion. J Cell Sci. 1993 Apr;104(Pt 4):991–999. doi: 10.1242/jcs.104.4.991. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES