Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Nov 1;367(Pt 3):617–628. doi: 10.1042/BJ20020714

Exoenzyme S shows selective ADP-ribosylation and GTPase-activating protein (GAP) activities towards small GTPases in vivo.

Maria L Henriksson 1, Charlotta Sundin 1, Anna L Jansson 1, Ake Forsberg 1, Ruth H Palmer 1, Bengt Hallberg 1
PMCID: PMC1222916  PMID: 12132999

Abstract

Intracellular targeting of the Pseudomonas aeruginosa toxins exoenzyme S (ExoS) and exoenzyme T (ExoT) initially results in disruption of the actin microfilament structure of eukaryotic cells. ExoS and ExoT are bifunctional cytotoxins, with N-terminal GTPase-activating protein (GAP) and C-terminal ADP-ribosyltransferase activities. We show that ExoS can modify multiple GTPases of the Ras superfamily in vivo. In contrast, ExoT shows no ADP-ribosylation activity towards any of the GTPases tested in vivo. We further examined ExoS targets in vivo and observed that ExoS modulates the activity of several of these small GTP-binding proteins, such as Ras, Rap1, Rap2, Ral, Rac1, RhoA and Cdc42. We suggest that ExoS is the major ADP-ribosyltransferase protein modulating small GTPase function encoded by P. aeruginosa. Furthermore, we show that the GAP activity of ExoS abrogates the activation of RhoA, Cdc42 and Rap1.

Full Text

The Full Text of this article is available as a PDF (403.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aktories K., Mohr C., Koch G. Clostridium botulinum C3 ADP-ribosyltransferase. Curr Top Microbiol Immunol. 1992;175:115–131. doi: 10.1007/978-3-642-76966-5_6. [DOI] [PubMed] [Google Scholar]
  2. Bette-Bobillo P., Giro P., Sainte-Marie J., Vidal M. Exoenzyme S from P. aeruginosa ADP ribosylates rab4 and inhibits transferrin recycling in SLO-permeabilized reticulocytes. Biochem Biophys Res Commun. 1998 Mar 17;244(2):336–341. doi: 10.1006/bbrc.1998.8263. [DOI] [PubMed] [Google Scholar]
  3. Black D. S., Bliska J. B. The RhoGAP activity of the Yersinia pseudotuberculosis cytotoxin YopE is required for antiphagocytic function and virulence. Mol Microbiol. 2000 Aug;37(3):515–527. doi: 10.1046/j.1365-2958.2000.02021.x. [DOI] [PubMed] [Google Scholar]
  4. Cantor S. B., Urano T., Feig L. A. Identification and characterization of Ral-binding protein 1, a potential downstream target of Ral GTPases. Mol Cell Biol. 1995 Aug;15(8):4578–4584. doi: 10.1128/mcb.15.8.4578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chavrier P., Goud B. The role of ARF and Rab GTPases in membrane transport. Curr Opin Cell Biol. 1999 Aug;11(4):466–475. doi: 10.1016/S0955-0674(99)80067-2. [DOI] [PubMed] [Google Scholar]
  6. Coburn J., Dillon S. T., Iglewski B. H., Gill D. M. Exoenzyme S of Pseudomonas aeruginosa ADP-ribosylates the intermediate filament protein vimentin. Infect Immun. 1989 Mar;57(3):996–998. doi: 10.1128/iai.57.3.996-998.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coburn J., Gill D. M. ADP-ribosylation of p21ras and related proteins by Pseudomonas aeruginosa exoenzyme S. Infect Immun. 1991 Nov;59(11):4259–4262. doi: 10.1128/iai.59.11.4259-4262.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Coburn J., Kane A. V., Feig L., Gill D. M. Pseudomonas aeruginosa exoenzyme S requires a eukaryotic protein for ADP-ribosyltransferase activity. J Biol Chem. 1991 Apr 5;266(10):6438–6446. [PubMed] [Google Scholar]
  9. Coburn J., Wyatt R. T., Iglewski B. H., Gill D. M. Several GTP-binding proteins, including p21c-H-ras, are preferred substrates of Pseudomonas aeruginosa exoenzyme S. J Biol Chem. 1989 May 25;264(15):9004–9008. [PubMed] [Google Scholar]
  10. Cowell B. A., Chen D. Y., Frank D. W., Vallis A. J., Fleiszig S. M. ExoT of cytotoxic Pseudomonas aeruginosa prevents uptake by corneal epithelial cells. Infect Immun. 2000 Jan;68(1):403–406. doi: 10.1128/iai.68.1.403-406.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. De Ruiter N. D., Burgering B. M., Bos J. L. Regulation of the Forkhead transcription factor AFX by Ral-dependent phosphorylation of threonines 447 and 451. Mol Cell Biol. 2001 Dec;21(23):8225–8235. doi: 10.1128/MCB.21.23.8225-8235.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Finck-Barbançon V., Frank D. W. Multiple domains are required for the toxic activity of Pseudomonas aeruginosa ExoU. J Bacteriol. 2001 Jul;183(14):4330–4344. doi: 10.1128/JB.183.14.4330-4344.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Flatau G., Lemichez E., Gauthier M., Chardin P., Paris S., Fiorentini C., Boquet P. Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature. 1997 Jun 12;387(6634):729–733. doi: 10.1038/42743. [DOI] [PubMed] [Google Scholar]
  14. Franke B., Akkerman J. W., Bos J. L. Rapid Ca2+-mediated activation of Rap1 in human platelets. EMBO J. 1997 Jan 15;16(2):252–259. doi: 10.1093/emboj/16.2.252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fraylick J. E., La Rocque J. R., Vincent T. S., Olson J. C. Independent and coordinate effects of ADP-ribosyltransferase and GTPase-activating activities of exoenzyme S on HT-29 epithelial cell function. Infect Immun. 2001 Sep;69(9):5318–5328. doi: 10.1128/IAI.69.9.5318-5328.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fraylick Jennifer E., Rucks Elizabeth A., Greene Deanne M., Vincent Timothy S., Olson Joan C. Eukaryotic cell determination of ExoS ADP-ribosyltransferase substrate specificity. Biochem Biophys Res Commun. 2002 Feb 15;291(1):91–100. doi: 10.1006/bbrc.2002.6402. [DOI] [PubMed] [Google Scholar]
  17. Frithz-Lindsten E., Du Y., Rosqvist R., Forsberg A. Intracellular targeting of exoenzyme S of Pseudomonas aeruginosa via type III-dependent translocation induces phagocytosis resistance, cytotoxicity and disruption of actin microfilaments. Mol Microbiol. 1997 Sep;25(6):1125–1139. doi: 10.1046/j.1365-2958.1997.5411905.x. [DOI] [PubMed] [Google Scholar]
  18. Fu H., Coburn J., Collier R. J. The eukaryotic host factor that activates exoenzyme S of Pseudomonas aeruginosa is a member of the 14-3-3 protein family. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2320–2324. doi: 10.1073/pnas.90.6.2320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Fu Y., Galán J. E. A salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature. 1999 Sep 16;401(6750):293–297. doi: 10.1038/45829. [DOI] [PubMed] [Google Scholar]
  20. Ganesan A. K., Frank D. W., Misra R. P., Schmidt G., Barbieri J. T. Pseudomonas aeruginosa exoenzyme S ADP-ribosylates Ras at multiple sites. J Biol Chem. 1998 Mar 27;273(13):7332–7337. doi: 10.1074/jbc.273.13.7332. [DOI] [PubMed] [Google Scholar]
  21. Ganesan A. K., Mende-Mueller L., Selzer J., Barbieri J. T. Pseudomonas aeruginosa exoenzyme S, a double ADP-ribosyltransferase, resembles vertebrate mono-ADP-ribosyltransferases. J Biol Chem. 1999 Apr 2;274(14):9503–9508. doi: 10.1074/jbc.274.14.9503. [DOI] [PubMed] [Google Scholar]
  22. Garrity-Ryan L., Kazmierczak B., Kowal R., Comolli J., Hauser A., Engel J. N. The arginine finger domain of ExoT contributes to actin cytoskeleton disruption and inhibition of internalization of Pseudomonas aeruginosa by epithelial cells and macrophages. Infect Immun. 2000 Dec;68(12):7100–7113. doi: 10.1128/iai.68.12.7100-7113.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Goehring U. M., Schmidt G., Pederson K. J., Aktories K., Barbieri J. T. The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J Biol Chem. 1999 Dec 17;274(51):36369–36372. doi: 10.1074/jbc.274.51.36369. [DOI] [PubMed] [Google Scholar]
  24. Govan J. R., Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev. 1996 Sep;60(3):539–574. doi: 10.1128/mr.60.3.539-574.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hallberg B., Rayter S. I., Downward J. Interaction of Ras and Raf in intact mammalian cells upon extracellular stimulation. J Biol Chem. 1994 Feb 11;269(6):3913–3916. [PubMed] [Google Scholar]
  26. Henriksson M. L., Rosqvist R., Telepnev M., Wolf-Watz H., Hallberg B. Ras effector pathway activation by epidermal growth factor is inhibited in vivo by exoenzyme S ADP-ribosylation of Ras. Biochem J. 2000 Apr 1;347(Pt 1):217–222. [PMC free article] [PubMed] [Google Scholar]
  27. Henriksson M. L., Trollér U., Hallberg B. 14-3-3 proteins are required for the inhibition of Ras by exoenzyme S. Biochem J. 2000 Aug 1;349(Pt 3):697–701. doi: 10.1042/bj3490697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Hofer F., Berdeaux R., Martin G. S. Ras-independent activation of Ral by a Ca(2+)-dependent pathway. Curr Biol. 1998 Jul 2;8(14):839–842. doi: 10.1016/s0960-9822(98)70327-6. [DOI] [PubMed] [Google Scholar]
  29. Hueck C. J. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev. 1998 Jun;62(2):379–433. doi: 10.1128/mmbr.62.2.379-433.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Iglewski B. H., Sadoff J., Bjorn M. J., Maxwell E. S. Pseudomonas aeruginosa exoenzyme S: an adenosine diphosphate ribosyltransferase distinct from toxin A. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3211–3215. doi: 10.1073/pnas.75.7.3211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Jullien-Flores V., Dorseuil O., Romero F., Letourneur F., Saragosti S., Berger R., Tavitian A., Gacon G., Camonis J. H. Bridging Ral GTPase to Rho pathways. RLIP76, a Ral effector with CDC42/Rac GTPase-activating protein activity. J Biol Chem. 1995 Sep 22;270(38):22473–22477. doi: 10.1074/jbc.270.38.22473. [DOI] [PubMed] [Google Scholar]
  32. Just I., Selzer J., Wilm M., von Eichel-Streiber C., Mann M., Aktories K. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature. 1995 Jun 8;375(6531):500–503. doi: 10.1038/375500a0. [DOI] [PubMed] [Google Scholar]
  33. Just I., Wilm M., Selzer J., Rex G., von Eichel-Streiber C., Mann M., Aktories K. The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins. J Biol Chem. 1995 Jun 9;270(23):13932–13936. doi: 10.1074/jbc.270.23.13932. [DOI] [PubMed] [Google Scholar]
  34. Kazmierczak B. I., Engel J. N. Pseudomonas aeruginosa ExoT acts in vivo as a GTPase-activating protein for RhoA, Rac1, and Cdc42. Infect Immun. 2002 Apr;70(4):2198–2205. doi: 10.1128/IAI.70.4.2198-2205.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Knox Andrea L., Brown Nicholas H. Rap1 GTPase regulation of adherens junction positioning and cell adhesion. Science. 2002 Feb 15;295(5558):1285–1288. doi: 10.1126/science.1067549. [DOI] [PubMed] [Google Scholar]
  36. Krall R., Schmidt G., Aktories K., Barbieri J. T. Pseudomonas aeruginosa ExoT is a Rho GTPase-activating protein. Infect Immun. 2000 Oct;68(10):6066–6068. doi: 10.1128/iai.68.10.6066-6068.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Krall Rebecca, Sun Jianjun, Pederson Kristin J., Barbieri Joseph T. In vivo rho GTPase-activating protein activity of Pseudomonas aeruginosa cytotoxin ExoS. Infect Immun. 2002 Jan;70(1):360–367. doi: 10.1128/IAI.70.1.360-367.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Kulich S. M., Frank D. W., Barbieri J. T. Expression of recombinant exoenzyme S of Pseudomonas aeruginosa. Infect Immun. 1995 Jan;63(1):1–8. doi: 10.1128/iai.63.1.1-8.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Liu S., Kulich S. M., Barbieri J. T. Identification of glutamic acid 381 as a candidate active site residue of Pseudomonas aeruginosa exoenzyme S. Biochemistry. 1996 Feb 27;35(8):2754–2758. doi: 10.1021/bi952340g. [DOI] [PubMed] [Google Scholar]
  40. Liu S., Yahr T. L., Frank D. W., Barbieri J. T. Biochemical relationships between the 53-kilodalton (Exo53) and 49-kilodalton (ExoS) forms of exoenzyme S of Pseudomonas aeruginosa. J Bacteriol. 1997 Mar;179(5):1609–1613. doi: 10.1128/jb.179.5.1609-1613.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Matsubara K., Kishida S., Matsuura Y., Kitayama H., Noda M., Kikuchi A. Plasma membrane recruitment of RalGDS is critical for Ras-dependent Ral activation. Oncogene. 1999 Feb 11;18(6):1303–1312. doi: 10.1038/sj.onc.1202425. [DOI] [PubMed] [Google Scholar]
  42. McGuffie E. M., Frank D. W., Vincent T. S., Olson J. C. Modification of Ras in eukaryotic cells by Pseudomonas aeruginosa exoenzyme S. Infect Immun. 1998 Jun;66(6):2607–2613. doi: 10.1128/iai.66.6.2607-2613.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. McGuffie E. M., Fraylick J. E., Hazen-Martin D. J., Vincent T. S., Olson J. C. Differential sensitivity of human epithelial cells to Pseudomonas aeruginosa exoenzyme S. Infect Immun. 1999 Jul;67(7):3494–3503. doi: 10.1128/iai.67.7.3494-3503.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Moore M. S. Ran and nuclear transport. J Biol Chem. 1998 Sep 4;273(36):22857–22860. doi: 10.1074/jbc.273.36.22857. [DOI] [PubMed] [Google Scholar]
  45. Nicas T. I., Frank D. W., Stenzel P., Lile J. D., Iglewski B. H. Role of exoenzyme S in chronic Pseudomonas aeruginosa lung infections. Eur J Clin Microbiol. 1985 Apr;4(2):175–179. doi: 10.1007/BF02013593. [DOI] [PubMed] [Google Scholar]
  46. Nicas T. I., Iglewski B. H. The contribution of exoproducts to virulence of Pseudomonas aeruginosa. Can J Microbiol. 1985 Apr;31(4):387–392. doi: 10.1139/m85-074. [DOI] [PubMed] [Google Scholar]
  47. Nobes C. D., Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell. 1995 Apr 7;81(1):53–62. doi: 10.1016/0092-8674(95)90370-4. [DOI] [PubMed] [Google Scholar]
  48. Ren X. D., Kiosses W. B., Schwartz M. A. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J. 1999 Feb 1;18(3):578–585. doi: 10.1093/emboj/18.3.578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Reuther G. W., Der C. J. The Ras branch of small GTPases: Ras family members don't fall far from the tree. Curr Opin Cell Biol. 2000 Apr;12(2):157–165. doi: 10.1016/s0955-0674(99)00071-x. [DOI] [PubMed] [Google Scholar]
  50. Ridley A. J., Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 1992 Aug 7;70(3):389–399. doi: 10.1016/0092-8674(92)90163-7. [DOI] [PubMed] [Google Scholar]
  51. Ridley A. J. Rho GTPases and cell migration. J Cell Sci. 2001 Aug;114(Pt 15):2713–2722. doi: 10.1242/jcs.114.15.2713. [DOI] [PubMed] [Google Scholar]
  52. Ridley A. J. Rho family proteins: coordinating cell responses. Trends Cell Biol. 2001 Dec;11(12):471–477. doi: 10.1016/s0962-8924(01)02153-5. [DOI] [PubMed] [Google Scholar]
  53. Riese M. J., Wittinghofer A., Barbieri J. T. ADP ribosylation of Arg41 of Rap by ExoS inhibits the ability of Rap to interact with its guanine nucleotide exchange factor, C3G. Biochemistry. 2001 Mar 20;40(11):3289–3294. doi: 10.1021/bi002729q. [DOI] [PubMed] [Google Scholar]
  54. Riese Matthew J., Goehring Udo-Michael, Ehrmantraut Mary E., Moss Joel, Barbieri Joseph T., Aktories Klaus, Schmidt Gudula. Auto-ADP-ribosylation of Pseudomonas aeruginosa ExoS. J Biol Chem. 2002 Jan 30;277(14):12082–12088. doi: 10.1074/jbc.M109039200. [DOI] [PubMed] [Google Scholar]
  55. Rosqvist R., Forsberg A., Rimpiläinen M., Bergman T., Wolf-Watz H. The cytotoxic protein YopE of Yersinia obstructs the primary host defence. Mol Microbiol. 1990 Apr;4(4):657–667. doi: 10.1111/j.1365-2958.1990.tb00635.x. [DOI] [PubMed] [Google Scholar]
  56. Rosqvist R., Forsberg A., Wolf-Watz H. Intracellular targeting of the Yersinia YopE cytotoxin in mammalian cells induces actin microfilament disruption. Infect Immun. 1991 Dec;59(12):4562–4569. doi: 10.1128/iai.59.12.4562-4569.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Rosqvist R., Håkansson S., Forsberg A., Wolf-Watz H. Functional conservation of the secretion and translocation machinery for virulence proteins of yersiniae, salmonellae and shigellae. EMBO J. 1995 Sep 1;14(17):4187–4195. doi: 10.1002/j.1460-2075.1995.tb00092.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Rosqvist R., Magnusson K. E., Wolf-Watz H. Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. EMBO J. 1994 Feb 15;13(4):964–972. doi: 10.1002/j.1460-2075.1994.tb06341.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Sander E. E., ten Klooster J. P., van Delft S., van der Kammen R. A., Collard J. G. Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J Cell Biol. 1999 Nov 29;147(5):1009–1022. doi: 10.1083/jcb.147.5.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Schmidt G., Sehr P., Wilm M., Selzer J., Mann M., Aktories K. Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1. Nature. 1997 Jun 12;387(6634):725–729. doi: 10.1038/42735. [DOI] [PubMed] [Google Scholar]
  61. Sekine A., Fujiwara M., Narumiya S. Asparagine residue in the rho gene product is the modification site for botulinum ADP-ribosyltransferase. J Biol Chem. 1989 May 25;264(15):8602–8605. [PubMed] [Google Scholar]
  62. Sundin C., Henriksson M. L., Hallberg B., Forsberg A., Frithz-Lindsten E. Exoenzyme T of Pseudomonas aeruginosa elicits cytotoxicity without interfering with Ras signal transduction. Cell Microbiol. 2001 Apr;3(4):237–246. doi: 10.1046/j.1462-5822.2001.00108.x. [DOI] [PubMed] [Google Scholar]
  63. Taylor S. J., Shalloway D. Cell cycle-dependent activation of Ras. Curr Biol. 1996 Dec 1;6(12):1621–1627. doi: 10.1016/s0960-9822(02)70785-9. [DOI] [PubMed] [Google Scholar]
  64. Tsukamoto N., Hattori M., Yang H., Bos J. L., Minato N. Rap1 GTPase-activating protein SPA-1 negatively regulates cell adhesion. J Biol Chem. 1999 Jun 25;274(26):18463–18469. doi: 10.1074/jbc.274.26.18463. [DOI] [PubMed] [Google Scholar]
  65. Urano T., Emkey R., Feig L. A. Ral-GTPases mediate a distinct downstream signaling pathway from Ras that facilitates cellular transformation. EMBO J. 1996 Feb 15;15(4):810–816. [PMC free article] [PubMed] [Google Scholar]
  66. Vallis A. J., Finck-Barbançon V., Yahr T. L., Frank D. W. Biological effects of Pseudomonas aeruginosa type III-secreted proteins on CHO cells. Infect Immun. 1999 Apr;67(4):2040–2044. doi: 10.1128/iai.67.4.2040-2044.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Vincent T. S., Fraylick J. E., McGuffie E. M., Olson J. C. ADP-ribosylation of oncogenic Ras proteins by pseudomonas aeruginosa exoenzyme S in vivo. Mol Microbiol. 1999 Jun;32(5):1054–1064. doi: 10.1046/j.1365-2958.1999.01420.x. [DOI] [PubMed] [Google Scholar]
  68. Von Pawel-Rammingen U., Telepnev M. V., Schmidt G., Aktories K., Wolf-Watz H., Rosqvist R. GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure. Mol Microbiol. 2000 May;36(3):737–748. doi: 10.1046/j.1365-2958.2000.01898.x. [DOI] [PubMed] [Google Scholar]
  69. Wang K. L., Roufogalis B. D. Ca2+/calmodulin stimulates GTP binding to the ras-related protein ral-A. J Biol Chem. 1999 May 21;274(21):14525–14528. doi: 10.1074/jbc.274.21.14525. [DOI] [PubMed] [Google Scholar]
  70. Wolthuis R. M., Bos J. L. Ras caught in another affair: the exchange factors for Ral. Curr Opin Genet Dev. 1999 Feb;9(1):112–117. doi: 10.1016/s0959-437x(99)80016-1. [DOI] [PubMed] [Google Scholar]
  71. Wolthuis R. M., de Ruiter N. D., Cool R. H., Bos J. L. Stimulation of gene induction and cell growth by the Ras effector Rlf. EMBO J. 1997 Nov 17;16(22):6748–6761. doi: 10.1093/emboj/16.22.6748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Yahr T. L., Barbieri J. T., Frank D. W. Genetic relationship between the 53- and 49-kilodalton forms of exoenzyme S from Pseudomonas aeruginosa. J Bacteriol. 1996 Mar;178(5):1412–1419. doi: 10.1128/jb.178.5.1412-1419.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Yahr T. L., Goranson J., Frank D. W. Exoenzyme S of Pseudomonas aeruginosa is secreted by a type III pathway. Mol Microbiol. 1996 Dec;22(5):991–1003. doi: 10.1046/j.1365-2958.1996.01554.x. [DOI] [PubMed] [Google Scholar]
  74. York R. D., Yao H., Dillon T., Ellig C. L., Eckert S. P., McCleskey E. W., Stork P. J. Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature. 1998 Apr 9;392(6676):622–626. doi: 10.1038/33451. [DOI] [PubMed] [Google Scholar]
  75. Zwartkruis F. J., Bos J. L. Ras and Rap1: two highly related small GTPases with distinct function. Exp Cell Res. 1999 Nov 25;253(1):157–165. doi: 10.1006/excr.1999.4695. [DOI] [PubMed] [Google Scholar]
  76. de Rooij J., Boenink N. M., van Triest M., Cool R. H., Wittinghofer A., Bos J. L. PDZ-GEF1, a guanine nucleotide exchange factor specific for Rap1 and Rap2. J Biol Chem. 1999 Dec 31;274(53):38125–38130. doi: 10.1074/jbc.274.53.38125. [DOI] [PubMed] [Google Scholar]
  77. de Rooij J., Zwartkruis F. J., Verheijen M. H., Cool R. H., Nijman S. M., Wittinghofer A., Bos J. L. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature. 1998 Dec 3;396(6710):474–477. doi: 10.1038/24884. [DOI] [PubMed] [Google Scholar]
  78. del Pozo M. A., Price L. S., Alderson N. B., Ren X. D., Schwartz M. A. Adhesion to the extracellular matrix regulates the coupling of the small GTPase Rac to its effector PAK. EMBO J. 2000 May 2;19(9):2008–2014. doi: 10.1093/emboj/19.9.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES