Abstract
Galectins, a family of beta-galactoside-specific endogenous lectins, are involved in regulating diverse activities such as proliferation/apoptosis, cell-cell (matrix) interaction and cell migration. It is presently unclear to what extent the carbohydrate fine specificities of the combining sites of mammalian galectins overlap. To address this issue, we performed an analysis of the carbohydrate-recognition domain (CRD-I) near the N-terminus of recombinant rat galectin-4 (G4-N) by the biotin/avidin-mediated microtitre plate lectin-binding assay with natural glycoproteins (gps)/polysaccharide and by the inhibition of galectin-glycan interactions with a panel of glycosubstances. Among the 35 glycans tested for lectin binding, G4-N reacted best with human blood group ABH precursor gps, and asialo porcine salivary gps, which contain high densities of the blood group Ii determinants Galbeta1-3GalNAc (the mucin-type sugar sequence on the human erythrocyte membrane) and/or GalNAcalpha1-Ser/Thr ( Tn ), whereas this lectin domain reacted weakly or not at all with most sialylated gps. Among the oligosaccharides tested by the inhibition assay, Galbeta1-3GlcNAcbeta1-3Galbeta1-4Glc was the best. It was 666.7 and 33.3 times more potent than Gal and Galbeta1-3GlcNAc, respectively. G4-N has a preference for the beta-anomer of Gal at the non-reducing ends of oligosaccharides with a Galbeta1-3 linkage, over Galbeta1-4 and Galbeta1-6. The fraction of Tn glycopeptide from asialo ovine submandibular glycoprotein was 8.3 times more active than Galbeta1-3GlcNAc. The overall carbohydrate specificity of G4-N can be defined as Galbeta1-3GlcNAcbeta1-3Galbeta1-4Glc (lacto- N -tetraose)>Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc (lacto- N -neo-tetraose) and Tn clusters>Galbeta1-4Glc and GalNAcbeta1-3Gal>Galbeta1-3GalNAc>Galbeta1-3GlcNAc>Galbeta1-4GlcNAc>GalNAc>Gal. The definition of this binding profile provides the basis to detect differential binding properties relative to the other galectins with ensuing implications for functional analysis.
Full Text
The Full Text of this article is available as a PDF (324.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALLEN P. Z., KABAT E. A. Immunochemical studies on blood groups. XXII. Immunochemical studies on the nondialyzable residue from partially hydrolyzed blood group A, B and O(H) substances (P1 fractions). J Immunol. 1959 Apr;82(4):340–357. [PubMed] [Google Scholar]
- André S., Pieters R. J., Vrasidas I., Kaltner H., Kuwabara I., Liu F. T., Liskamp R. M., Gabius H. J. Wedgelike glycodendrimers as inhibitors of binding of mammalian galectins to glycoproteins, lactose maxiclusters, and cell surface glycoconjugates. Chembiochem. 2001 Nov 5;2(11):822–830. doi: 10.1002/1439-7633(20011105)2:11<822::AID-CBIC822>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
- Cooper Douglas N. W. Galectinomics: finding themes in complexity. Biochim Biophys Acta. 2002 Sep 19;1572(2-3):209–231. doi: 10.1016/s0304-4165(02)00310-0. [DOI] [PubMed] [Google Scholar]
- Danielsen E. M., van Deurs B. Galectin-4 and small intestinal brush border enzymes form clusters. Mol Biol Cell. 1997 Nov;8(11):2241–2251. doi: 10.1091/mbc.8.11.2241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duk M., Lisowska E., Wu J. H., Wu A. M. The biotin/avidin-mediated microtiter plate lectin assay with the use of chemically modified glycoprotein ligand. Anal Biochem. 1994 Sep;221(2):266–272. doi: 10.1006/abio.1994.1410. [DOI] [PubMed] [Google Scholar]
- Finne J., Breimer M. E., Hansson G. C., Karlsson K. A., Leffler H., Vliegenthart J. F., van Halbeek H. Novel polyfucosylated N-linked glycopeptides with blood group A, H, X, and Y determinants from human small intestinal epithelial cells. J Biol Chem. 1989 Apr 5;264(10):5720–5735. [PubMed] [Google Scholar]
- Fournet B., Montreuil J., Strecker G., Dorland L., Haverkamp J., Vliegenthart F. G., Binette J. P., Schmid K. Determination of the primary structures of 16 asialo-carbohydrate units derived from human plasma alpha 1-acid glycoprotein by 360-MHZ 1H NMR spectroscopy and permethylation analysis. Biochemistry. 1978 Nov 28;17(24):5206–5214. doi: 10.1021/bi00617a021. [DOI] [PubMed] [Google Scholar]
- Gabius H. J. Animal lectins. Eur J Biochem. 1997 Feb 1;243(3):543–576. doi: 10.1111/j.1432-1033.1997.t01-1-00543.x. [DOI] [PubMed] [Google Scholar]
- Gabius H. J. Influence of type of linkage and spacer on the interaction of beta-galactoside-binding proteins with immobilized affinity ligands. Anal Biochem. 1990 Aug 15;189(1):91–94. doi: 10.1016/0003-2697(90)90050-j. [DOI] [PubMed] [Google Scholar]
- Hansen G. H., Immerdal L., Thorsen E., Niels-Christiansen L. L., Nystrøm B. T., Demant E. J., Danielsen E. M. Lipid rafts exist as stable cholesterol-independent microdomains in the brush border membrane of enterocytes. J Biol Chem. 2001 Jun 1;276(34):32338–32344. doi: 10.1074/jbc.M102667200. [DOI] [PubMed] [Google Scholar]
- Herp A., Borelli C., Wu A. M. Biochemistry and lectin binding properties of mammalian salivary mucous glycoproteins. Adv Exp Med Biol. 1988;228:395–435. doi: 10.1007/978-1-4613-1663-3_15. [DOI] [PubMed] [Google Scholar]
- Herp A., Wu A. M., Moschera J. Current concepts of the structure and nature of mammalian salivary mucous glycoproteins. Mol Cell Biochem. 1979 Jan 15;23(1):27–44. doi: 10.1007/BF00226677. [DOI] [PubMed] [Google Scholar]
- Hippo Y., Yashiro M., Ishii M., Taniguchi H., Tsutsumi S., Hirakawa K., Kodama T., Aburatani H. Differential gene expression profiles of scirrhous gastric cancer cells with high metastatic potential to peritoneum or lymph nodes. Cancer Res. 2001 Feb 1;61(3):889–895. [PubMed] [Google Scholar]
- Kaltner H., Stierstorfer B. Animal lectins as cell adhesion molecules. Acta Anat (Basel) 1998;161(1-4):162–179. doi: 10.1159/000046456. [DOI] [PubMed] [Google Scholar]
- Kaltner Herbert, Seyrek Kamel, Heck Andrea, Sinowatz Fred, Gabius Hans-Joachim. Galectin-1 and galectin-3 in fetal development of bovine respiratory and digestive tracts. Comparison of cell type-specific expression profiles and subcellular localization. Cell Tissue Res. 2001 Nov 7;307(1):35–46. doi: 10.1007/s004410100457. [DOI] [PubMed] [Google Scholar]
- Kunz C., Rudloff S., Baier W., Klein N., Strobel S. Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu Rev Nutr. 2000;20:699–722. doi: 10.1146/annurev.nutr.20.1.699. [DOI] [PubMed] [Google Scholar]
- Lahm H., André S., Hoeflich A., Fischer J. R., Sordat B., Kaltner H., Wolf E., Gabius H. J. Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures. J Cancer Res Clin Oncol. 2001;127(6):375–386. doi: 10.1007/s004320000207. [DOI] [PubMed] [Google Scholar]
- Lindberg B., Lönngren J., Powell D. A. Structural studies on the specific type-14 pneumococcal polysaccharide. Carbohydr Res. 1977 Sep;58(1):177–186. doi: 10.1016/s0008-6215(00)83413-8. [DOI] [PubMed] [Google Scholar]
- Lisowska E., Messeter L., Duk M., Czerwiński M., Lundblad A. A monoclonal anti-glycophorin A antibody recognizing the blood group M determinant: studies on the subspecificity. Mol Immunol. 1987 Jun;24(6):605–613. doi: 10.1016/0161-5890(87)90041-1. [DOI] [PubMed] [Google Scholar]
- Lloyd K. O., Kabat E. A. Immunochemical studies on blood groups. XLI. Proposed structures for the carbohydrate portions of blood group A, B, H, Lewis-a, and Lewis-b substances. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1470–1477. doi: 10.1073/pnas.61.4.1470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maisonrouge-McAuliffe F., Kabat E. A. Immunochemical studies on blood groups. Heterogeneity of oligosaccharides liberated by degradation with alkaline borohydride of two human ovarian cyst fractions differing in B, I, and i activities and in reactivity toward concanavalin A. Arch Biochem Biophys. 1976 Jul;175(1):81–89. doi: 10.1016/0003-9861(76)90487-2. [DOI] [PubMed] [Google Scholar]
- Moschera J., Pigman W. The isolation and characterization of rat sublingual mucus-glycoprotein. Carbohydr Res. 1975 Mar;40(1):53–67. doi: 10.1016/s0008-6215(00)82668-3. [DOI] [PubMed] [Google Scholar]
- Nilsson B., Nordén N. E., Svensson S. Structural studies on the carbohydrate portion of fetuin. J Biol Chem. 1979 Jun 10;254(11):4545–4553. [PubMed] [Google Scholar]
- Oda Y., Herrmann J., Gitt M. A., Turck C. W., Burlingame A. L., Barondes S. H., Leffler H. Soluble lactose-binding lectin from rat intestine with two different carbohydrate-binding domains in the same peptide chain. J Biol Chem. 1993 Mar 15;268(8):5929–5939. [PubMed] [Google Scholar]
- PUSZTAI A., MORGAN W. T. Studies in immunochemistry. 18. The isolation and properties of a sialomucopolysaccharide possessing blood-group Le-a specificity and virus-receptor activity. Biochem J. 1961 Jan;78:135–146. doi: 10.1042/bj0780135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rechreche H., Mallo G. V., Montalto G., Dagorn J. C., Iovanna J. L. Cloning and expression of the mRNA of human galectin-4, an S-type lectin down-regulated in colorectal cancer. Eur J Biochem. 1997 Aug 15;248(1):225–230. doi: 10.1111/j.1432-1033.1997.00225.x. [DOI] [PubMed] [Google Scholar]
- Slomiany A., Slomiany B. L. Structures of the acidic oligosaccharides isolated from rat sublingual glycoprotein. J Biol Chem. 1978 Oct 25;253(20):7301–7306. [PubMed] [Google Scholar]
- Tettamanti G., Pigman W. Purification and characterization of bovine and ovine submaxillary mucins. Arch Biochem Biophys. 1968 Mar 20;124(1):41–50. doi: 10.1016/0003-9861(68)90301-9. [DOI] [PubMed] [Google Scholar]
- Van Halbeek H., Dorland L., Vliegenthart J. F., Kochetkov N. K., Arbatsky N. P., Derevitskaya V. A. Characterization of the primary structure and the microheterogeneity of the carbohydrate chains of porcine blood-group H substance by 500-MHz 1H-NMR spectroscopy. Eur J Biochem. 1982 Sep;127(1):21–29. doi: 10.1111/j.1432-1033.1982.tb06832.x. [DOI] [PubMed] [Google Scholar]
- Wasano K., Hirakawa Y. Two domains of rat galectin-4 bind to distinct structures of the intercellular borders of colorectal epithelia. J Histochem Cytochem. 1999 Jan;47(1):75–82. doi: 10.1177/002215549904700108. [DOI] [PubMed] [Google Scholar]
- Wieruszeski J. M., Michalski J. C., Montreuil J., Strecker G., Peter-Katalinic J., Egge H., van Halbeek H., Mutsaers J. H., Vliegenthart J. F. Structure of the monosialyl oligosaccharides derived from salivary gland mucin glycoproteins of the Chinese swiftlet (genus Collocalia). Characterization of novel types of extended core structure, Gal beta(1----3)[GlcNAc beta(1----6)] GalNAc alpha(1----3)GalNAc(-ol), and of chain termination, [Gal alpha(1----4)]0-1[Gal beta(1----4)]2GlcNAc beta(1----.). J Biol Chem. 1987 May 15;262(14):6650–6657. [PubMed] [Google Scholar]
- Wu A. M. Expression of binding properties of Gal/GalNAc reactive lectins by mammalian glycotopes (an updated report). Adv Exp Med Biol. 2001;491:55–64. doi: 10.1007/978-1-4615-1267-7_4. [DOI] [PubMed] [Google Scholar]
- Wu A. M., Herp A., Song S. C., Wu J. H., Chang K. S. Interaction of native and asialo rat sublingual glycoproteins with lectins. Life Sci. 1995;57(20):1841–1852. doi: 10.1016/0024-3205(95)02164-e. [DOI] [PubMed] [Google Scholar]
- Wu A. M., Kabat E. A., Nilsson B., Zopf D. A., Gruezo F. G., Liao J. Immunochemical studies on blood groups. Purification and characterization of radioactive 3H-reduced di- to hexasaccharides produced by alkaline beta-elimination-borohydride 3H reduction of Smith degraded blood group A active glycoproteins. J Biol Chem. 1984 Jun 10;259(11):7178–7186. [PubMed] [Google Scholar]
- Wu A. M., Kabat E. A., Pereira M. E., Gruezo F. G., Liao J. Immunochemical studies on blood groups: The internal structure and immunological properties of water-soluble human blood group A substance studied by Smith degradation, liberation, and fractionation of oligosaccharides and reaction with lectins. Arch Biochem Biophys. 1982 May;215(2):390–404. doi: 10.1016/0003-9861(82)90099-6. [DOI] [PubMed] [Google Scholar]
- Wu A. M., Lin S. R., Chin L. K., Chow L. P., Lin J. Y. Defining the carbohydrate specificities of Abrus precatorius agglutinin as T (Gal beta 1----3GalNAc) greater than I/II (Gal beta 1----3/4GlcNAc). J Biol Chem. 1992 Sep 25;267(27):19130–19139. [PubMed] [Google Scholar]
- Wu A. M., Pigman W. Preparation and characterization of armadillo submandibular glycoproteins. Biochem J. 1977 Jan 1;161(1):37–47. doi: 10.1042/bj1610037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu A. M., Song S. C., Chang S. C., Wu J. H., Chang K. S., Kabat E. A. Further characterization of the binding properties of a GalNAc specific lectin from Codium fragile subspecies tomentosoides. Glycobiology. 1997 Dec;7(8):1061–1066. doi: 10.1093/glycob/7.8.1061. [DOI] [PubMed] [Google Scholar]
- Wu A. M., Song S. C., Chen Y. Y., Gilboa-Garber N. Defining the carbohydrate specificities of aplysia gonad lectin exhibiting a peculiar D-galacturonic acid affinity. J Biol Chem. 2000 May 12;275(19):14017–14024. doi: 10.1074/jbc.275.19.14017. [DOI] [PubMed] [Google Scholar]
- Wu A. M. Structural concepts of the human blood group A, B, H, Le(a), Le(b), I and i active glycoproteins purified from human ovarian cyst fluid. Adv Exp Med Biol. 1988;228:351–394. doi: 10.1007/978-1-4613-1663-3_14. [DOI] [PubMed] [Google Scholar]
- Wu A. M., Wu J. H., Tsai M. S., Kaltner H., Gabius H. J. Carbohydrate specificity of a galectin from chicken liver (CG-16). Biochem J. 2001 Sep 15;358(Pt 3):529–538. doi: 10.1042/0264-6021:3580529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu Albert M. Carbohydrate structural units in glycosphingolipids as receptors for Gal and GalNAc reactive lectins. Neurochem Res. 2002 Aug;27(7-8):593–600. doi: 10.1023/a:1020263730943. [DOI] [PubMed] [Google Scholar]
- Wu J. H., Song S. C., Chen Y. Y., Tsai M. C., Kabat E. A., Wu A. M. Multi-antennary Gal beta1-->4GlcNAc and Gal beta1-->3GalNAc clusters as important ligands for a lectin isolated from the sponge Geodia cydonium. FEBS Lett. 1998 May 1;427(1):134–138. doi: 10.1016/s0014-5793(98)00411-6. [DOI] [PubMed] [Google Scholar]