Abstract
CHO 2, encoding human sterol 8-isomerase (hSI), was introduced into plasmids pYX213 or pET23a. The resulting native protein was overexpressed in erg 2 yeast cells and purified to apparent homogeneity. The enzyme exhibited a K (m) of 50 microM and a turnover number of 0.423 s(-1) for zymosterol, an isoelectric point of 7.70, a native molecular mass of 107000 Da and was tetrameric. The structural features of zymosterol provided optimal substrate acceptability. Biomimetic studies of acid-catalysed isomerization of zymosterol resulted in formation of cholest-8(14)-enol, whereas the enzyme-generated product was a Delta(7)-sterol, suggesting absolute stereochemical control of the reaction by hSI. Using (2)H(2)O and either zymosterol or cholesta-7,24-dienol as substrates, the reversibility of the reaction was confirmed by GC-MS of the deuterated products. The positional specific incorporation of deuterium at C-9alpha was established by a combination of (1)H- and (13)C-NMR analyses of the enzyme-generated cholesta-7,24-dienol. Kinetic analyses indicated the reaction equilibrium ( K (eq)=14; DeltaG(o')=-6.5 kJ/mol) for double-bond isomerization favoured the forward direction, Delta(8) to Delta(7). Treatment of hSI with different high-energy intermediate analogues produced the following dissociation constants ( K (i)): emopamil (2 microM)=tamoxifen (1 microM)=tridemorph (1 microM)<25-azacholesterol (21 microM) <ketoconazole (156 microM)<cholesterol (620 microM). The results were consistent with stereoelectronic features of isomerization and support the general model for Delta(7)-sterol formation in cholesterol synthesis.
Full Text
The Full Text of this article is available as a PDF (287.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akhtar M., Rahimtula A. D., Wilton D. C. The stereochemistry of hydrogen elimination from C-7 in cholesterol and ergosterol biosynthesis. Biochem J. 1970 Apr;117(3):539–542. doi: 10.1042/bj1170539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ashman W. H., Barbuch R. J., Ulbright C. E., Jarrett H. W., Bard M. Cloning and disruption of the yeast C-8 sterol isomerase gene. Lipids. 1991 Aug;26(8):628–632. doi: 10.1007/BF02536427. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Braverman N., Lin P., Moebius F. F., Obie C., Moser A., Glossmann H., Wilcox W. R., Rimoin D. L., Smith M., Kratz L. Mutations in the gene encoding 3 beta-hydroxysteroid-delta 8, delta 7-isomerase cause X-linked dominant Conradi-Hünermann syndrome. Nat Genet. 1999 Jul;22(3):291–294. doi: 10.1038/10357. [DOI] [PubMed] [Google Scholar]
- Cleland W. W. Statistical analysis of enzyme kinetic data. Methods Enzymol. 1979;63:103–138. doi: 10.1016/0076-6879(79)63008-2. [DOI] [PubMed] [Google Scholar]
- Gylling H., Pyrhönen S., Mäntylä E., Mäenpä H., Kangas L., Miettinen T. A. Tamoxifen and toremifene lower serum cholesterol by inhibition of delta 8-cholesterol conversion to lathosterol in women with breast cancer. J Clin Oncol. 1995 Dec;13(12):2900–2905. doi: 10.1200/JCO.1995.13.12.2900. [DOI] [PubMed] [Google Scholar]
- Hanner M., Moebius F. F., Weber F., Grabner M., Striessnig J., Glossmann H. Phenylalkylamine Ca2+ antagonist binding protein. Molecular cloning, tissue distribution, and heterologous expression. J Biol Chem. 1995 Mar 31;270(13):7551–7557. doi: 10.1074/jbc.270.13.7551. [DOI] [PubMed] [Google Scholar]
- Herman G. E. X-Linked dominant disorders of cholesterol biosynthesis in man and mouse. Biochim Biophys Acta. 2000 Dec 15;1529(1-3):357–373. doi: 10.1016/s1388-1981(00)00160-8. [DOI] [PubMed] [Google Scholar]
- Kang M. K., Kim C. K., Johng T. N., Paik Y. K. Cholesterol biosynthesis from lanosterol: regulation and purification of rat hepatic sterol 8-isomerase. J Biochem. 1995 Apr;117(4):819–823. doi: 10.1093/oxfordjournals.jbchem.a124781. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lamb D. C., Kelly D. E., Venkateswarlu K., Manning N. J., Bligh H. F., Schunck W. H., Kelly S. L. Generation of a complete, soluble, and catalytically active sterol 14 alpha-demethylase-reductase complex. Biochemistry. 1999 Jul 6;38(27):8733–8738. doi: 10.1021/bi9825089. [DOI] [PubMed] [Google Scholar]
- Moebius F. F., Reiter R. J., Bermoser K., Glossmann H., Cho S. Y., Paik Y. K. Pharmacological analysis of sterol delta8-delta7 isomerase proteins with [3H]ifenprodil. Mol Pharmacol. 1998 Sep;54(3):591–598. doi: 10.1124/mol.54.3.591. [DOI] [PubMed] [Google Scholar]
- Moebius F. F., Soellner K. E., Fiechtner B., Huck C. W., Bonn G., Glossmann H. Histidine77, glutamic acid81, glutamic acid123, threonine126, asparagine194, and tryptophan197 of the human emopamil binding protein are required for in vivo sterol delta 8-delta 7 isomerization. Biochemistry. 1999 Jan 19;38(3):1119–1127. doi: 10.1021/bi981804i. [DOI] [PubMed] [Google Scholar]
- Nes W. D., Janssen G. G., Bergenstrahle A. Structural requirements for transformation of substrates by the (S)-adenosyl-L-methionine:delta 24(25)-sterol methyl transferase. J Biol Chem. 1991 Aug 15;266(23):15202–15212. [PubMed] [Google Scholar]
- Nes W. D., McCourt B. S., Zhou W. X., Ma J., Marshall J. A., Peek L. A., Brennan M. Overexpression, purification, and stereochemical studies of the recombinant (S)-adenosyl-L-methionine: delta 24(25)- to delta 24(28)-sterol methyl transferase enzyme from Saccharomyces cerevisiae. Arch Biochem Biophys. 1998 May 15;353(2):297–311. doi: 10.1006/abbi.1998.0665. [DOI] [PubMed] [Google Scholar]
- Nes W. D. Sterol methyl transferase: enzymology and inhibition. Biochim Biophys Acta. 2000 Dec 15;1529(1-3):63–88. doi: 10.1016/s1388-1981(00)00138-4. [DOI] [PubMed] [Google Scholar]
- Nitahara Y., Aoyama Y., Horiuchi T., Noshiro M., Yoshida Y. Purification and characterization of rat sterol 14-demethylase P450 (CYP51) expressed in Escherichia coli. J Biochem. 1999 Nov;126(5):927–933. doi: 10.1093/oxfordjournals.jbchem.a022536. [DOI] [PubMed] [Google Scholar]
- Paik Y. K., Billheimer J. T., Magolda R. L., Gaylor J. L. Microsomal enzymes of cholesterol biosynthesis from lanosterol. Solubilization and purification of steroid 8-isomerase. J Biol Chem. 1986 May 15;261(14):6470–6477. [PubMed] [Google Scholar]
- Paul R., Silve S., De Nys N., Dupuy P. H., Bouteiller C. L., Rosenfeld J., Ferrara P., Le Fur G., Casellas P., Loison G. Both the immunosuppressant SR31747 and the antiestrogen tamoxifen bind to an emopamil-insensitive site of mammalian Delta8-Delta7 sterol isomerase. J Pharmacol Exp Ther. 1998 Jun;285(3):1296–1302. [PubMed] [Google Scholar]
- Ruan B., Wilson W. K., Pang J., Gerst N., Pinkerton F. D., Tsai J., Kelley R. I., Whitby F. G., Milewicz D. M., Garbern J. Sterols in blood of normal and Smith-Lemli-Opitz subjects. J Lipid Res. 2001 May;42(5):799–812. [PubMed] [Google Scholar]
- Silve S., Dupuy P. H., Labit-Lebouteiller C., Kaghad M., Chalon P., Rahier A., Taton M., Lupker J., Shire D., Loison G. Emopamil-binding protein, a mammalian protein that binds a series of structurally diverse neuroprotective agents, exhibits delta8-delta7 sterol isomerase activity in yeast. J Biol Chem. 1996 Sep 13;271(37):22434–22440. doi: 10.1074/jbc.271.37.22434. [DOI] [PubMed] [Google Scholar]
- Venkatramesh M., Guo D. A., Jia Z., Nes W. D. Mechanism and structural requirements for transformation of substrates by the (S)-adenosyl-L-methionine:delta 24(25)-sterol methyl transferase from Saccharomyces cerevisiae. Biochim Biophys Acta. 1996 Feb 16;1299(3):313–324. doi: 10.1016/0005-2760(95)00218-9. [DOI] [PubMed] [Google Scholar]
- Venkatramesh M., Nes W. D. Novel sterol transformations promoted by Saccharomyces cerevisiae strain GL7: evidence for 9 beta, 19-cyclopropyl to 9(11)-isomerization and for 14-demethylation to 8(14)-sterols. Arch Biochem Biophys. 1995 Dec 1;324(1):189–199. doi: 10.1006/abbi.1995.9912. [DOI] [PubMed] [Google Scholar]