Abstract
The object of the present study is to investigate whether the physiologically dominant thiol compounds such as GSH and cysteine or their nitrosothiol compounds affect the formation of the iron- N -methyl-D-glucamine dithiocarbamate [(MGD)(2)Fe(2+)]-nitric oxide complex. The present study provided experimental evidence that physiological concentrations of GSH (approx. 5 mM) and L-cysteine (approx. 0.5 mM) accelerated the formation of the (MGD)(2)Fe(2+)-NO complex from nitrite by two and three times respectively. The rate constants for the reduction of (MGD)(3)Fe(3+) to (MGD)(2)Fe(2+) by GSH and cysteine were calculated as 1.3 and 2.0x10(2) M(-1).s(-1) respectively. Furthermore, depletion of GSH was demonstrated in PC12 cells, and thiol compounds enhanced the formation of reactive oxygen species by the (MGD)(2)Fe(2+) complex by accelerating its redox turnover. The main effect of the physiological concentration of thiols was the reduction of (MGD)(3)Fe(3+). S -nitrosoglutathione spontaneously reacted with (MGD)(2)Fe(2+) to produce the (MGD)(2)Fe(2+)-NO complex with a 1:2 stoichiometry. In fact, (MGD)(2)Fe(2+) was as good an indicator of nitrosothiols as it was of NO itself. The present study elucidates the difficulties of utilizing the (MGD)(2)Fe(2+) complex for the quantification of NO in biological samples, especially in vivo.
Full Text
The Full Text of this article is available as a PDF (167.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akaike T., Yoshida M., Miyamoto Y., Sato K., Kohno M., Sasamoto K., Miyazaki K., Ueda S., Maeda H. Antagonistic action of imidazolineoxyl N-oxides against endothelium-derived relaxing factor/.NO through a radical reaction. Biochemistry. 1993 Jan 26;32(3):827–832. doi: 10.1021/bi00054a013. [DOI] [PubMed] [Google Scholar]
- Archer S. Measurement of nitric oxide in biological models. FASEB J. 1993 Feb 1;7(2):349–360. doi: 10.1096/fasebj.7.2.8440411. [DOI] [PubMed] [Google Scholar]
- Arnelle D. R., Day B. J., Stamler J. S. Diethyl dithiocarbamate-induced decomposition of S-nitrosothiols. Nitric Oxide. 1997 Feb;1(1):56–64. doi: 10.1006/niox.1996.0107. [DOI] [PubMed] [Google Scholar]
- Arnelle D. R., Stamler J. S. NO+, NO, and NO- donation by S-nitrosothiols: implications for regulation of physiological functions by S-nitrosylation and acceleration of disulfide formation. Arch Biochem Biophys. 1995 Apr 20;318(2):279–285. doi: 10.1006/abbi.1995.1231. [DOI] [PubMed] [Google Scholar]
- Arroyo C. M., Kohno M. Difficulties encountered in the detection of nitric oxide (NO) by spin trapping techniques. A cautionary note. Free Radic Res Commun. 1991;14(2):145–155. doi: 10.3109/10715769109094127. [DOI] [PubMed] [Google Scholar]
- Burkitt M. J., Gilbert B. C. The autoxidation of iron(II) in aqueous systems: the effects of iron chelation by physiological, non-physiological and therapeutic chelators on the generation of reactive oxygen species and the inducement of biomolecular damage. Free Radic Res Commun. 1991;14(2):107–123. doi: 10.3109/10715769109094123. [DOI] [PubMed] [Google Scholar]
- Collier J., Vallance P. Second messenger role for NO widens to nervous and immune systems. Trends Pharmacol Sci. 1989 Nov;10(11):427–431. doi: 10.1016/s0165-6147(89)80001-x. [DOI] [PubMed] [Google Scholar]
- Doi K., Akaike T., Horie H., Noguchi Y., Fujii S., Beppu T., Ogawa M., Maeda H. Excessive production of nitric oxide in rat solid tumor and its implication in rapid tumor growth. Cancer. 1996 Apr 15;77(8 Suppl):1598–1604. doi: 10.1002/(SICI)1097-0142(19960415)77:8<1598::AID-CNCR27>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
- Duling D. R. Simulation of multiple isotropic spin-trap EPR spectra. J Magn Reson B. 1994 Jun;104(2):105–110. doi: 10.1006/jmrb.1994.1062. [DOI] [PubMed] [Google Scholar]
- Fellman J. H., Fujita T. S. Effects of solvents on acetylcholine conformation. Nature. 1966 Aug 20;211(5051):848–850. doi: 10.1038/211848b0. [DOI] [PubMed] [Google Scholar]
- Forman D., Al-Dabbagh S., Doll R. Nitrates, nitrites and gastric cancer in Great Britain. Nature. 1985 Feb 21;313(6004):620–625. doi: 10.1038/313620a0. [DOI] [PubMed] [Google Scholar]
- Fujii H., Berliner L. J. Ex vivo EPR detection of nitric oxide in brain tissue. Magn Reson Med. 1999 Sep;42(3):599–602. doi: 10.1002/(sici)1522-2594(199909)42:3<599::aid-mrm24>3.0.co;2-y. [DOI] [PubMed] [Google Scholar]
- Fujii H., Koscielniak J., Berliner L. J. Determination and characterization of nitric oxide generation in mice by in vivo L-Band EPR spectroscopy. Magn Reson Med. 1997 Oct;38(4):565–568. doi: 10.1002/mrm.1910380410. [DOI] [PubMed] [Google Scholar]
- Fujii S., Suzuki Y., Yoshimura T., Kamada H. In vivo three-dimensional EPR imaging of nitric oxide production from isosorbide dinitrate in mice. Am J Physiol. 1998 May;274(5 Pt 1):G857–G862. doi: 10.1152/ajpgi.1998.274.5.G857. [DOI] [PubMed] [Google Scholar]
- Giulivi C., Poderoso J. J., Boveris A. Production of nitric oxide by mitochondria. J Biol Chem. 1998 May 1;273(18):11038–11043. doi: 10.1074/jbc.273.18.11038. [DOI] [PubMed] [Google Scholar]
- Glover R. E., Ivy E. D., Orringer E. P., Maeda H., Mason R. P. Detection of nitrosyl hemoglobin in venous blood in the treatment of sickle cell anemia with hydroxyurea. Mol Pharmacol. 1999 Jun;55(6):1006–1010. doi: 10.1124/mol.55.6.1006. [DOI] [PubMed] [Google Scholar]
- Goldman R. K., Vlessis A. A., Trunkey D. D. Nitrosothiol quantification in human plasma. Anal Biochem. 1998 May 15;259(1):98–103. doi: 10.1006/abio.1998.2651. [DOI] [PubMed] [Google Scholar]
- Greenberg S. S., Wilcox D. E., Rubanyi G. M. Endothelium-derived relaxing factor released from canine femoral artery by acetylcholine cannot be identified as free nitric oxide by electron paramagnetic resonance spectroscopy. Circ Res. 1990 Dec;67(6):1446–1452. doi: 10.1161/01.res.67.6.1446. [DOI] [PubMed] [Google Scholar]
- Gross S. S., Wolin M. S. Nitric oxide: pathophysiological mechanisms. Annu Rev Physiol. 1995;57:737–769. doi: 10.1146/annurev.ph.57.030195.003513. [DOI] [PubMed] [Google Scholar]
- Hanna P. M., Mason R. P. Direct evidence for inhibition of free radical formation from Cu(I) and hydrogen peroxide by glutathione and other potential ligands using the EPR spin-trapping technique. Arch Biochem Biophys. 1992 May 15;295(1):205–213. doi: 10.1016/0003-9861(92)90507-s. [DOI] [PubMed] [Google Scholar]
- Hiramoto K., Tomiyama S., Kikugawa K. Appearance of electron spin resonance signals in the interaction of dithiocarbamate-Fe(II) with nitrogen dioxide and nitrite. Free Radic Res. 1997 Nov;27(5):505–509. doi: 10.3109/10715769709065790. [DOI] [PubMed] [Google Scholar]
- Hissin P. J., Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem. 1976 Jul;74(1):214–226. doi: 10.1016/0003-2697(76)90326-2. [DOI] [PubMed] [Google Scholar]
- Ignarro L. J., Buga G. M., Wood K. S., Byrns R. E., Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9265–9269. doi: 10.1073/pnas.84.24.9265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiang J., Jordan S. J., Barr D. P., Gunther M. R., Maeda H., Mason R. P. In vivo production of nitric oxide in rats after administration of hydroxyurea. Mol Pharmacol. 1997 Dec;52(6):1081–1086. doi: 10.1124/mol.52.6.1081. [DOI] [PubMed] [Google Scholar]
- Joseph J., Kalyanaraman B., Hyde J. S. Trapping of nitric oxide by nitronyl nitroxides: an electron spin resonance investigation. Biochem Biophys Res Commun. 1993 Apr 30;192(2):926–934. doi: 10.1006/bbrc.1993.1504. [DOI] [PubMed] [Google Scholar]
- Jourd'heuil D., Laroux F. S., Miles A. M., Wink D. A., Grisham M. B. Effect of superoxide dismutase on the stability of S-nitrosothiols. Arch Biochem Biophys. 1999 Jan 15;361(2):323–330. doi: 10.1006/abbi.1998.1010. [DOI] [PubMed] [Google Scholar]
- Kelm M. Nitric oxide metabolism and breakdown. Biochim Biophys Acta. 1999 May 5;1411(2-3):273–289. doi: 10.1016/s0005-2728(99)00020-1. [DOI] [PubMed] [Google Scholar]
- Kharitonov V. G., Sundquist A. R., Sharma V. S. Kinetics of nitrosation of thiols by nitric oxide in the presence of oxygen. J Biol Chem. 1995 Nov 24;270(47):28158–28164. doi: 10.1074/jbc.270.47.28158. [DOI] [PubMed] [Google Scholar]
- Komarov A. M. In vivo on-line detection of no distribution in endotoxin-treated mice by l-band ESR. Cell Mol Biol (Noisy-le-grand) 2000 Dec;46(8):1329–1336. [PubMed] [Google Scholar]
- Komarov A. M., Lai C. S. Detection of nitric oxide production in mice by spin-trapping electron paramagnetic resonance spectroscopy. Biochim Biophys Acta. 1995 Aug 15;1272(1):29–36. doi: 10.1016/0925-4439(95)00061-8. [DOI] [PubMed] [Google Scholar]
- Komarov A. M., Mak I. T., Weglicki W. B. Iron potentiates nitric oxide scavenging by dithiocarbamates in tissue of septic shock mice. Biochim Biophys Acta. 1997 Oct 24;1361(3):229–234. doi: 10.1016/s0925-4439(97)84636-4. [DOI] [PubMed] [Google Scholar]
- Komarov A., Mattson D., Jones M. M., Singh P. K., Lai C. S. In vivo spin trapping of nitric oxide in mice. Biochem Biophys Res Commun. 1993 Sep 30;195(3):1191–1198. doi: 10.1006/bbrc.1993.2170. [DOI] [PubMed] [Google Scholar]
- Kosaka H., Katsuki Y., Shiga T. Spin trapping study on the kinetics of Fe2+ autoxidation: formation of spin adducts and their destruction by superoxide. Arch Biochem Biophys. 1992 Mar;293(2):401–408. doi: 10.1016/0003-9861(92)90412-p. [DOI] [PubMed] [Google Scholar]
- Kosower N. S., Kosower E. M. The glutathione status of cells. Int Rev Cytol. 1978;54:109–160. doi: 10.1016/s0074-7696(08)60166-7. [DOI] [PubMed] [Google Scholar]
- Kotake Y., Moore D. R., Sang H., Reinke L. A. Continuous monitoring of in vivo nitric oxide formation using EPR analysis in biliary flow. Nitric Oxide. 1999;3(2):114–122. doi: 10.1006/niox.1999.0214. [DOI] [PubMed] [Google Scholar]
- Lai C. S., Komarov A. M. Spin trapping of nitric oxide produced in vivo in septic-shock mice. FEBS Lett. 1994 May 30;345(2-3):120–124. doi: 10.1016/0014-5793(94)00422-6. [DOI] [PubMed] [Google Scholar]
- Lecour S., Maupoil V., Siri O., Tabard A., Rochette L. Electron spin resonance detection of nitric oxide generation in major organs from LPS-treated rats. J Cardiovasc Pharmacol. 1999 Jan;33(1):78–85. doi: 10.1097/00005344-199901000-00012. [DOI] [PubMed] [Google Scholar]
- Meister A., Anderson M. E. Glutathione. Annu Rev Biochem. 1983;52:711–760. doi: 10.1146/annurev.bi.52.070183.003431. [DOI] [PubMed] [Google Scholar]
- Meister A. Glutathione metabolism. Methods Enzymol. 1995;251:3–7. doi: 10.1016/0076-6879(95)51106-7. [DOI] [PubMed] [Google Scholar]
- Mikoian V. D., Kubrina L. N., Serezhenkov V. A., Burgova E. N., Stukan R. A., Vanin A. F. Gidrofobnye i gidrofil'nye kompleksy Fe2+ s proizvodnymi ditiokarbamatakak lovushki oksida azota v organizme myshei. Biofizika. 1997 Mar-Apr;42(2):490–501. [PubMed] [Google Scholar]
- Mikoyan V. D., Kubrina L. N., Serezhenkov V. A., Stukan R. A., Vanin A. F. Complexes of Fe2+ with diethyldithiocarbamate or N-methyl-D-glucamine dithiocarbamate as traps of nitric oxide in animal tissues: comparative investigations. Biochim Biophys Acta. 1997 Aug 29;1336(2):225–234. doi: 10.1016/s0304-4165(97)00032-9. [DOI] [PubMed] [Google Scholar]
- Mikuni T., Tatsuta M. Production of the thiyl free radical by the reaction of N-methyl-N'-nitro-N-nitrosoguanidine with L-cysteine. Biochem Int. 1991 Jun;24(3):585–591. [PubMed] [Google Scholar]
- Miyajima T., Kotake Y. Optimal time and dosage of phenyl N-tert-butyl nitrone (PBN) for the inhibition of nitric oxide synthase induction in mice. Free Radic Biol Med. 1997;22(3):463–470. doi: 10.1016/s0891-5849(96)00391-7. [DOI] [PubMed] [Google Scholar]
- Mordvintcev P., Mülsch A., Busse R., Vanin A. On-line detection of nitric oxide formation in liquid aqueous phase by electron paramagnetic resonance spectroscopy. Anal Biochem. 1991 Nov 15;199(1):142–146. doi: 10.1016/0003-2697(91)90282-x. [DOI] [PubMed] [Google Scholar]
- Moroz L. L., Norby S. W., Cruz L., Sweedler J. V., Gillette R., Clarkson R. B. Non-enzymatic production of nitric oxide (NO) from NO synthase inhibitors. Biochem Biophys Res Commun. 1998 Dec 30;253(3):571–576. doi: 10.1006/bbrc.1998.9810. [DOI] [PubMed] [Google Scholar]
- Obolenskaya MYu, Vanin A. F., Mordvintcev P. I., Mülsch A., Decker K. Epr evidence of nitric oxide production by the regenerating rat liver. Biochem Biophys Res Commun. 1994 Jul 15;202(1):571–576. doi: 10.1006/bbrc.1994.1966. [DOI] [PubMed] [Google Scholar]
- Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
- Paschenko S. V., Khramtsov V. V., Skatchkov M. P., Plyusnin V. F., Bassenge E. EPR and laser flash photolysis studies of the reaction of nitric oxide with water soluble NO trap Fe(II)-proline-dithiocarbamate complex. Biochem Biophys Res Commun. 1996 Aug 14;225(2):577–584. doi: 10.1006/bbrc.1996.1214. [DOI] [PubMed] [Google Scholar]
- Petit C., Bernardes-Genisson V., Hoffmann P., Souchard J., Labidalle S. Novel donors of nitric oxide derived of S-nitrosocysteine possessing antioxidant activities. Braz J Med Biol Res. 1999 Nov;32(11):1407–1412. doi: 10.1590/s0100-879x1999001100011. [DOI] [PubMed] [Google Scholar]
- Pietraforte D., Mallozzi C., Scorza G., Minetti M. Role of thiols in the targeting of S-nitroso thiols to red blood cells. Biochemistry. 1995 May 30;34(21):7177–7185. doi: 10.1021/bi00021a032. [DOI] [PubMed] [Google Scholar]
- Pou S., Tsai P., Porasuphatana S., Halpern H. J., Chandramouli G. V., Barth E. D., Rosen G. M. Spin trapping of nitric oxide by ferro-chelates: kinetic and in vivo pharmacokinetic studies. Biochim Biophys Acta. 1999 Apr 19;1427(2):216–226. doi: 10.1016/s0304-4165(99)00014-8. [DOI] [PubMed] [Google Scholar]
- Reinke L. A., Moore D. R., Kotake Y. Hepatic nitric oxide formation: spin trapping detection in biliary efflux. Anal Biochem. 1996 Dec 1;243(1):8–14. doi: 10.1006/abio.1996.0476. [DOI] [PubMed] [Google Scholar]
- Rusyn I., Kadiiska M. B., Dikalova A., Kono H., Yin M., Tsuchiya K., Mason R. P., Peters J. M., Gonzalez F. J., Segal B. H. Phthalates rapidly increase production of reactive oxygen species in vivo: role of Kupffer cells. Mol Pharmacol. 2001 Apr;59(4):744–750. doi: 10.1124/mol.59.4.744. [DOI] [PubMed] [Google Scholar]
- Shen X., Tian J., Li J., Li X., Chen Y. Formation of the excited ferryl species following Fenton reaction. Free Radic Biol Med. 1992 Nov;13(5):585–592. doi: 10.1016/0891-5849(92)90152-7. [DOI] [PubMed] [Google Scholar]
- Shi X., Rojanasakul Y., Gannett P., Liu K., Mao Y., Daniel L. N., Ahmed N., Saffiotti U. Generation of thiyl and ascorbyl radicals in the reaction of peroxynitrite with thiols and ascorbate at physiological pH. J Inorg Biochem. 1994 Nov 1;56(2):77–86. doi: 10.1016/0162-0134(94)85039-9. [DOI] [PubMed] [Google Scholar]
- Shinobu L. A., Jones S. G., Jones M. M. Sodium N-methyl-D-glucamine dithiocarbamate and cadmium intoxication. Acta Pharmacol Toxicol (Copenh) 1984 Mar;54(3):189–194. doi: 10.1111/j.1600-0773.1984.tb01916.x. [DOI] [PubMed] [Google Scholar]
- Singh R. J., Hogg N., Joseph J., Kalyanaraman B. Mechanism of nitric oxide release from S-nitrosothiols. J Biol Chem. 1996 Aug 2;271(31):18596–18603. doi: 10.1074/jbc.271.31.18596. [DOI] [PubMed] [Google Scholar]
- Singh S. P., Wishnok J. S., Keshive M., Deen W. M., Tannenbaum S. R. The chemistry of the S-nitrosoglutathione/glutathione system. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14428–14433. doi: 10.1073/pnas.93.25.14428. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tannenbaum S. R., Weisman M., Fett D. The effect of nitrate intake on nitrite formation in human saliva. Food Cosmet Toxicol. 1976 Dec;14(6):549–552. doi: 10.1016/s0015-6264(76)80006-5. [DOI] [PubMed] [Google Scholar]
- Tateishi N., Higashi T., Shinya S., Naruse A., Sakamoto Y. Studies on the regulation of glutathione level in rat liver. J Biochem. 1974 Jan;75(1):93–103. doi: 10.1093/oxfordjournals.jbchem.a130387. [DOI] [PubMed] [Google Scholar]
- Tsuchiya K., Jiang J. J., Yoshizumi M., Tamaki T., Houchi H., Minakuchi K., Fukuzawa K., Mason R. P. Nitric oxide-forming reactions of the water-soluble nitric oxide spin-trapping agent, MGD. Free Radic Biol Med. 1999 Aug;27(3-4):347–355. doi: 10.1016/s0891-5849(99)00062-3. [DOI] [PubMed] [Google Scholar]
- Tsuchiya K., Yoshizumi M., Houchi H., Mason R. P. Nitric oxide-forming reaction between the iron-N-methyl-D-glucamine dithiocarbamate complex and nitrite. J Biol Chem. 2000 Jan 21;275(3):1551–1556. doi: 10.1074/jbc.275.3.1551. [DOI] [PubMed] [Google Scholar]
- Vedernikov Y. P., Mordvintcev P. I., Malenkova I. V., Vanin A. F. Effect of diethyldithiocarbamate on the activity of nitric oxide-releasing vasodilators. Eur J Pharmacol. 1992 Feb 25;212(1):125–128. doi: 10.1016/0014-2999(92)90085-i. [DOI] [PubMed] [Google Scholar]
- Venkataraman S., Martin S. M., Schafer F. Q., Buettner G. R. Detailed methods for the quantification of nitric oxide in aqueous solutions using either an oxygen monitor or EPR. Free Radic Biol Med. 2000 Sep 15;29(6):580–585. doi: 10.1016/s0891-5849(00)00404-4. [DOI] [PubMed] [Google Scholar]
- Wang P., Zweier J. L. Measurement of nitric oxide and peroxynitrite generation in the postischemic heart. Evidence for peroxynitrite-mediated reperfusion injury. J Biol Chem. 1996 Nov 15;271(46):29223–29230. doi: 10.1074/jbc.271.46.29223. [DOI] [PubMed] [Google Scholar]
- Woldman YYu, Khramtsov V. V., Grigor'ev I. A., Kiriljuk I. A., Utepbergenov D. I. Spin trapping of nitric oxide by nitronylnitroxides: measurement of the activity of no synthase from rat cerebellum. Biochem Biophys Res Commun. 1994 Jul 15;202(1):195–203. doi: 10.1006/bbrc.1994.1912. [DOI] [PubMed] [Google Scholar]
- Yoshimura T., Yokoyama H., Fujii S., Takayama F., Oikawa K., Kamada H. In vivo EPR detection and imaging of endogenous nitric oxide in lipopolysaccharide-treated mice. Nat Biotechnol. 1996 Aug;14(8):992–994. doi: 10.1038/nbt0896-992. [DOI] [PubMed] [Google Scholar]
- Zhelyaskov V. R., Gee K. R., Godwin D. W. Control of NO concentration in solutions of nitrosothiol compounds by light. Photochem Photobiol. 1998 Mar;67(3):282–288. [PubMed] [Google Scholar]
- Zweier J. L., Wang P., Kuppusamy P. Direct measurement of nitric oxide generation in the ischemic heart using electron paramagnetic resonance spectroscopy. J Biol Chem. 1995 Jan 6;270(1):304–307. doi: 10.1074/jbc.270.1.304. [DOI] [PubMed] [Google Scholar]