Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Nov 1;367(Pt 3):809–816. doi: 10.1042/BJ20020277

Trypanosoma brucei prenylated-protein carboxyl methyltransferase prefers farnesylated substrates.

Frederick S Buckner 1, David P Kateete 1, George W Lubega 1, Wesley C Van Voorhis 1, Kohei Yokoyama 1
PMCID: PMC1222931  PMID: 12141948

Abstract

Carboxyl methylation of the C-terminal prenylated cysteine, which occurs in most farnesylated and geranylgeranylated proteins, is a reversible step and is implicated in the regulation of membrane binding and cellular functions of prenylated proteins such as GTPases. The gene coding for prenylated-protein carboxyl methyltransferase (PPMT) of the protozoan parasite Trypanosoma brucei has been cloned and expressed in the baculovirus/Sf9 cell system. The protein of 245 amino acids has 24-28% sequence identity to the orthologues from other species including human and Saccharomyces cerevisiae. Methyltransferase activity was detected in the membrane fraction from Sf9 cells infected with the recombinant baculovirus using N -acetyl- S -farnesylcysteine (AFC) and S -adenosyl[ methyl -(3)H]methionine ([(3)H]AdoMet) as substrates. Recombinant T. brucei PPMT prefers AFC to N -acetyl- S -geranylgeranylcysteine (AGGC) by 10-50-fold based on the V (max)/ K (m) values. Native PPMT activity detected in the membrane fraction from T. brucei procyclics displays similar substrate specificity ( approximately 40-fold preference for AFC over AGGC). In contrast, mouse liver PPMT utilizes both AFC and AGGC as substrates with similar catalytic efficiencies. Several cellular proteins of the T. brucei bloodstream form were shown to be carboxyl methylated in a cell-free system. Incorporation of [(3)H]methyl group from [(3)H]AdoMet into most of the proteins was significantly inhibited by AFC but not AGGC at 20 microM, suggesting that T. brucei PPMT acts on farnesylated proteins in the cell. Cells of the T. brucei bloodstream form show higher sensitivity to AFC and AGGC (EC(50)=70-80 microM) compared with mouse 3T3 cells (EC(50)>150 microM).

Full Text

The Full Text of this article is available as a PDF (440.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashby M. N., Errada P. R., Boyartchuk V. L., Rine J. Isolation and DNA sequence of the STE14 gene encoding farnesyl cysteine: carboxyl methyltransferase. Yeast. 1993 Aug;9(8):907–913. doi: 10.1002/yea.320090810. [DOI] [PubMed] [Google Scholar]
  2. Bergo M. O., Leung G. K., Ambroziak P., Otto J. C., Casey P. J., Gomes A. Q., Seabra M. C., Young S. G. Isoprenylcysteine carboxyl methyltransferase deficiency in mice. J Biol Chem. 2000 Dec 19;276(8):5841–5845. doi: 10.1074/jbc.C000831200. [DOI] [PubMed] [Google Scholar]
  3. Bergo M. O., Leung G. K., Ambroziak P., Otto J. C., Casey P. J., Young S. G. Targeted inactivation of the isoprenylcysteine carboxyl methyltransferase gene causes mislocalization of K-Ras in mammalian cells. J Biol Chem. 2000 Jun 9;275(23):17605–17610. doi: 10.1074/jbc.C000079200. [DOI] [PubMed] [Google Scholar]
  4. Boivin D., Lin W., Béliveau R. Essential arginine residues in isoprenylcysteine protein carboxyl methyltransferase. Biochem Cell Biol. 1997;75(1):63–69. [PubMed] [Google Scholar]
  5. Boyartchuk V. L., Ashby M. N., Rine J. Modulation of Ras and a-factor function by carboxyl-terminal proteolysis. Science. 1997 Mar 21;275(5307):1796–1800. doi: 10.1126/science.275.5307.1796. [DOI] [PubMed] [Google Scholar]
  6. Buckner F. S., Verlinde C. L., La Flamme A. C., Van Voorhis W. C. Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing beta-galactosidase. Antimicrob Agents Chemother. 1996 Nov;40(11):2592–2597. doi: 10.1128/aac.40.11.2592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chakrabarti D., Azam T., DelVecchio C., Qiu L., Park Y. I., Allen C. M. Protein prenyl transferase activities of Plasmodium falciparum. Mol Biochem Parasitol. 1998 Aug 1;94(2):175–184. doi: 10.1016/s0166-6851(98)00065-6. [DOI] [PubMed] [Google Scholar]
  8. Dai Q., Choy E., Chiu V., Romano J., Slivka S. R., Steitz S. A., Michaelis S., Philips M. R. Mammalian prenylcysteine carboxyl methyltransferase is in the endoplasmic reticulum. J Biol Chem. 1998 Jun 12;273(24):15030–15034. doi: 10.1074/jbc.273.24.15030. [DOI] [PubMed] [Google Scholar]
  9. Desrosiers R. R., Gauthier F., Lanthier J., Béliveau R. Modulation of Rho and cytoskeletal protein attachment to membranes by a prenylcysteine analog. J Biol Chem. 2000 May 19;275(20):14949–14957. doi: 10.1074/jbc.275.20.14949. [DOI] [PubMed] [Google Scholar]
  10. Ding J., Lu D. J., Pérez-Sala D., Ma Y. T., Maddox J. F., Gilbert B. A., Badwey J. A., Rando R. R. Farnesyl-L-cysteine analogs can inhibit or initiate superoxide release by human neutrophils. J Biol Chem. 1994 Jun 17;269(24):16837–16844. [PubMed] [Google Scholar]
  11. Field H., Blench I., Croft S., Field M. C. Characterisation of protein isoprenylation in procyclic form Trypanosoma brucei. Mol Biochem Parasitol. 1996 Nov 12;82(1):67–80. doi: 10.1016/0166-6851(96)02723-5. [DOI] [PubMed] [Google Scholar]
  12. Field H., Farjah M., Pal A., Gull K., Field M. C. Complexity of trypanosomatid endocytosis pathways revealed by Rab4 and Rab5 isoforms in Trypanosoma brucei. J Biol Chem. 1998 Nov 27;273(48):32102–32110. doi: 10.1074/jbc.273.48.32102. [DOI] [PubMed] [Google Scholar]
  13. Fukada Y., Matsuda T., Kokame K., Takao T., Shimonishi Y., Akino T., Yoshizawa T. Effects of carboxyl methylation of photoreceptor G protein gamma-subunit in visual transduction. J Biol Chem. 1994 Feb 18;269(7):5163–5170. [PubMed] [Google Scholar]
  14. Gelb M. H. Protein prenylation, et cetera: signal transduction in two dimensions. Science. 1997 Mar 21;275(5307):1750–1751. doi: 10.1126/science.275.5307.1750. [DOI] [PubMed] [Google Scholar]
  15. Ghomashchi F., Zhang X., Liu L., Gelb M. H. Binding of prenylated and polybasic peptides to membranes: affinities and intervesicle exchange. Biochemistry. 1995 Sep 19;34(37):11910–11918. doi: 10.1021/bi00037a032. [DOI] [PubMed] [Google Scholar]
  16. Glomset J. A., Farnsworth C. C. Role of protein modification reactions in programming interactions between ras-related GTPases and cell membranes. Annu Rev Cell Biol. 1994;10:181–205. doi: 10.1146/annurev.cb.10.110194.001145. [DOI] [PubMed] [Google Scholar]
  17. Hancock J. F., Paterson H., Marshall C. J. A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell. 1990 Oct 5;63(1):133–139. doi: 10.1016/0092-8674(90)90294-o. [DOI] [PubMed] [Google Scholar]
  18. Hasne M. P., Lawrence F. Characterization of prenylated protein methyltransferase in Leishmania. Biochem J. 1999 Sep 15;342(Pt 3):513–518. [PMC free article] [PubMed] [Google Scholar]
  19. Huzoor-Akbar, Wang W., Kornhauser R., Volker C., Stock J. B. Protein prenylcysteine analog inhibits agonist-receptor-mediated signal transduction in human platelets. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):868–872. doi: 10.1073/pnas.90.3.868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Liu L., Jang G. F., Farnsworth C. C., Yokoyama K., Glomset J. A., Gelb M. H. Synthetic prenylated peptides: studying prenyl protein-specific endoprotease and other aspects of protein prenylation. Methods Enzymol. 1995;250:189–206. doi: 10.1016/0076-6879(95)50072-3. [DOI] [PubMed] [Google Scholar]
  21. Ma Y. T., Shi Y. Q., Lim Y. H., McGrail S. H., Ware J. A., Rando R. R. Mechanistic studies on human platelet isoprenylated protein methyltransferase: farnesylcysteine analogs block platelet aggregation without inhibiting the methyltransferase. Biochemistry. 1994 May 10;33(18):5414–5420. doi: 10.1021/bi00184a009. [DOI] [PubMed] [Google Scholar]
  22. Mauricio de Mendonca S. M., Nepomuceno da Silva J. L., Cunha e-Silva N., de Souza W., Gazos Lopes U. Characterization of a Rab11 homologue in Trypanosoma cruzi. Gene. 2000 Feb 8;243(1-2):179–185. doi: 10.1016/s0378-1119(99)00480-1. [DOI] [PubMed] [Google Scholar]
  23. Musha T., Kawata M., Takai Y. The geranylgeranyl moiety but not the methyl moiety of the smg-25A/rab3A protein is essential for the interactions with membrane and its inhibitory GDP/GTP exchange protein. J Biol Chem. 1992 May 15;267(14):9821–9825. [PubMed] [Google Scholar]
  24. Nepomuceno-Silva J. L., Yokoyama K., de Mello L. D., Mendonca S. M., Paixão J. C., Baron R., Faye J. C., Buckner F. S., Van Voorhis W. C., Gelb M. H. TcRho1, a farnesylated Rho family homologue from Trypanosoma cruzi: cloning, trans-splicing, and prenylation studies. J Biol Chem. 2001 May 18;276(32):29711–29718. doi: 10.1074/jbc.M102920200. [DOI] [PubMed] [Google Scholar]
  25. Phelouzat M. A., Lawrence F., Moulay L., Borot C., Schaeverbeke J., Schaeverbeke M., Robert-Gero M. Leishmania donovani: antagonistic effect of S-adenosyl methionine on ultrastructural changes and growth inhibition induced by sinefungin. Exp Parasitol. 1992 Mar;74(2):177–187. doi: 10.1016/0014-4894(92)90045-c. [DOI] [PubMed] [Google Scholar]
  26. Pillinger M. H., Volker C., Stock J. B., Weissmann G., Philips M. R. Characterization of a plasma membrane-associated prenylcysteine-directed alpha carboxyl methyltransferase in human neutrophils. J Biol Chem. 1994 Jan 14;269(2):1486–1492. [PubMed] [Google Scholar]
  27. Pérez-Sala D., Gilbert B. A., Tan E. W., Rando R. R. Prenylated protein methyltransferases do not distinguish between farnesylated and geranylgeranylated substrates. Biochem J. 1992 Jun 15;284(Pt 3):835–840. doi: 10.1042/bj2840835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Romano J. D., Schmidt W. K., Michaelis S. The Saccharomyces cerevisiae prenylcysteine carboxyl methyltransferase Ste14p is in the endoplasmic reticulum membrane. Mol Biol Cell. 1998 Aug;9(8):2231–2247. doi: 10.1091/mbc.9.8.2231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Silvius J. R., l'Heureux F. Fluorimetric evaluation of the affinities of isoprenylated peptides for lipid bilayers. Biochemistry. 1994 Mar 15;33(10):3014–3022. doi: 10.1021/bi00176a034. [DOI] [PubMed] [Google Scholar]
  30. Stephenson R. C., Clarke S. Characterization of a rat liver protein carboxyl methyltransferase involved in the maturation of proteins with the -CXXX C-terminal sequence motif. J Biol Chem. 1992 Jul 5;267(19):13314–13319. [PubMed] [Google Scholar]
  31. Stephenson R. C., Clarke S. Identification of a C-terminal protein carboxyl methyltransferase in rat liver membranes utilizing a synthetic farnesyl cysteine-containing peptide substrate. J Biol Chem. 1990 Sep 25;265(27):16248–16254. [PubMed] [Google Scholar]
  32. Tan E. W., Pérez-Sala D., Cañada F. J., Rando R. R. Identifying the recognition unit for G protein methylation. J Biol Chem. 1991 Jun 15;266(17):10719–10722. [PubMed] [Google Scholar]
  33. Weston D., Patel B., Van Voorhis W. C. Virulence in Trypanosoma cruzi infection correlates with the expression of a distinct family of sialidase superfamily genes. Mol Biochem Parasitol. 1999 Jan 5;98(1):105–116. doi: 10.1016/s0166-6851(98)00152-2. [DOI] [PubMed] [Google Scholar]
  34. Yokoyama K., Lin Y., Stuart K. D., Gelb M. H. Prenylation of proteins in Trypanosoma brucei. Mol Biochem Parasitol. 1997 Jul;87(1):61–69. doi: 10.1016/s0166-6851(97)00043-1. [DOI] [PubMed] [Google Scholar]
  35. Yokoyama K., Trobridge P., Buckner F. S., Scholten J., Stuart K. D., Van Voorhis W. C., Gelb M. H. The effects of protein farnesyltransferase inhibitors on trypanosomatids: inhibition of protein farnesylation and cell growth. Mol Biochem Parasitol. 1998 Jul 1;94(1):87–97. doi: 10.1016/s0166-6851(98)00053-x. [DOI] [PubMed] [Google Scholar]
  36. Yokoyama K., Trobridge P., Buckner F. S., Van Voorhis W. C., Stuart K. D., Gelb M. H. Protein farnesyltransferase from Trypanosoma brucei. A heterodimer of 61- and 65-kda subunits as a new target for antiparasite therapeutics. J Biol Chem. 1998 Oct 9;273(41):26497–26505. doi: 10.1074/jbc.273.41.26497. [DOI] [PubMed] [Google Scholar]
  37. Zhang F. L., Casey P. J. Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem. 1996;65:241–269. doi: 10.1146/annurev.bi.65.070196.001325. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES