Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Nov 1;367(Pt 3):841–847. doi: 10.1042/BJ20020379

Engineering of coenzyme specificity of formate dehydrogenase from Saccharomyces cerevisiae.

Alexander E Serov 1, Anna S Popova 1, Vladimir V Fedorchuk 1, Vladimir I Tishkov 1
PMCID: PMC1222933  PMID: 12144528

Abstract

A eukaryotic formate dehydrogenase (EC 1.2.1.2, FDH) with its substrate specificity changed from NAD(+) to NADP(+) has been constructed by introducing two single-point mutations, Asp(196)-->Ala (D196A) and Tyr(197)-->Arg (Y197R). The mutagenesis was based on the results of homology modelling of a NAD(+)-specific FDH from Saccharomyces cerevisiae (SceFDH) using the Pseudomonas sp.101 FDH (PseFDH) crystal structure as a template. The resulting model structure suggested that Asp(196) and Tyr(197) mediate the absolute coenzyme specificity of SceFDH for NAD(+).

Full Text

The Full Text of this article is available as a PDF (224.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernard N., Johnsen K., Holbrook J. J., Delcour J. D175 discriminates between NADH and NADPH in the coenzyme binding site of Lactobacillus delbrueckii subsp. bulgaricus D-lactate dehydrogenase. Biochem Biophys Res Commun. 1995 Mar 28;208(3):895–900. doi: 10.1006/bbrc.1995.1419. [DOI] [PubMed] [Google Scholar]
  2. Bocanegra J. A., Scrutton N. S., Perham R. N. Creation of an NADP-dependent pyruvate dehydrogenase multienzyme complex by protein engineering. Biochemistry. 1993 Mar 23;32(11):2737–2740. doi: 10.1021/bi00062a001. [DOI] [PubMed] [Google Scholar]
  3. Carugo O., Argos P. NADP-dependent enzymes. I: Conserved stereochemistry of cofactor binding. Proteins. 1997 May;28(1):10–28. doi: 10.1002/(sici)1097-0134(199705)28:1<10::aid-prot2>3.0.co;2-n. [DOI] [PubMed] [Google Scholar]
  4. Chen R., Greer A., Dean A. M. Redesigning secondary structure to invert coenzyme specificity in isopropylmalate dehydrogenase. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12171–12176. doi: 10.1073/pnas.93.22.12171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen Z., Lee W. R., Chang S. H. Role of aspartic acid 38 in the cofactor specificity of Drosophila alcohol dehydrogenase. Eur J Biochem. 1991 Dec 5;202(2):263–267. doi: 10.1111/j.1432-1033.1991.tb16371.x. [DOI] [PubMed] [Google Scholar]
  6. Colas des Francs-Small C., Ambard-Bretteville F., Small I. D., Rémy R. Identification of a major soluble protein in mitochondria from nonphotosynthetic tissues as NAD-dependent formate dehydrogenase. Plant Physiol. 1993 Aug;102(4):1171–1177. doi: 10.1104/pp.102.4.1171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hummel W., Kula M. R. Dehydrogenases for the synthesis of chiral compounds. Eur J Biochem. 1989 Sep 1;184(1):1–13. doi: 10.1111/j.1432-1033.1989.tb14983.x. [DOI] [PubMed] [Google Scholar]
  8. Hummel W. Large-scale applications of NAD(P)-dependent oxidoreductases: recent developments. Trends Biotechnol. 1999 Dec;17(12):487–492. doi: 10.1016/s0167-7799(98)01207-4. [DOI] [PubMed] [Google Scholar]
  9. Kato N., Sahm H., Wagner F. Steady-state kinetics of formaldehyde dehydrogenase and formate dehydrogenase from a methanol-utilizing yeast, Candida boidinii. Biochim Biophys Acta. 1979 Jan 12;566(1):12–20. doi: 10.1016/0005-2744(79)90243-2. [DOI] [PubMed] [Google Scholar]
  10. Labrou N. E., Rigden D. J., Clonis Y. D. Characterization of the NAD+ binding site of Candida boidinii formate dehydrogenase by affinity labelling and site-directed mutagenesis. Eur J Biochem. 2000 Nov;267(22):6657–6664. doi: 10.1046/j.1432-1327.2000.01761.x. [DOI] [PubMed] [Google Scholar]
  11. Lamzin V. S., Dauter Z., Popov V. O., Harutyunyan E. H., Wilson K. S. High resolution structures of holo and apo formate dehydrogenase. J Mol Biol. 1994 Feb 25;236(3):759–785. doi: 10.1006/jmbi.1994.1188. [DOI] [PubMed] [Google Scholar]
  12. Peacock D., Boulter D. Kinetic studies of formate dehydrogenase. Biochem J. 1970 Dec;120(4):763–769. doi: 10.1042/bj1200763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Popov V. O., Lamzin V. S. NAD(+)-dependent formate dehydrogenase. Biochem J. 1994 Aug 1;301(Pt 3):625–643. doi: 10.1042/bj3010625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Scrutton N. S., Berry A., Perham R. N. Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature. 1990 Jan 4;343(6253):38–43. doi: 10.1038/343038a0. [DOI] [PubMed] [Google Scholar]
  15. Serov A. E., Popova A. S., Tishkov V. I. The kinetic mechanism of formate dehydrogenase from bakery yeast. Dokl Biochem Biophys. 2002 Jan-Feb;382:26–30. doi: 10.1023/a:1014451106193. [DOI] [PubMed] [Google Scholar]
  16. Tishkov V. I., Galkin A. G., Fedorchuk V. V., Savitsky P. A., Rojkova A. M., Gieren H., Kula M. R. Pilot scale production and isolation of recombinant NAD+- and NADP+-specific formate dehydrogenases. Biotechnol Bioeng. 1999 Jul 20;64(2):187–193. [PubMed] [Google Scholar]
  17. Tishkov V. I., Matorin A. D., Rojkova A. M., Fedorchuk V. V., Savitsky P. A., Dementieva L. A., Lamzin V. S., Mezentzev A. V., Popov V. O. Site-directed mutagenesis of the formate dehydrogenase active centre: role of the His332-Gln313 pair in enzyme catalysis. FEBS Lett. 1996 Jul 15;390(1):104–108. doi: 10.1016/0014-5793(96)00641-2. [DOI] [PubMed] [Google Scholar]
  18. Vinals C., Depiereux E., Feytmans E. Prediction of structurally conserved regions of D-specific hydroxy acid dehydrogenases by multiple alignment with formate dehydrogenase. Biochem Biophys Res Commun. 1993 Apr 15;192(1):182–188. doi: 10.1006/bbrc.1993.1398. [DOI] [PubMed] [Google Scholar]
  19. Zaks A. M., Avilova T. V., Egorova O. A., Popov V. O., Egorov A. M. Kineticheskii mekhanizm deistviia NAD-zavisimoi formiatdegidrogenazy metilotrofnykh drozhzhei Candida methylica. Biokhimiia. 1982 Apr;47(4):546–551. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES