Abstract
A eukaryotic formate dehydrogenase (EC 1.2.1.2, FDH) with its substrate specificity changed from NAD(+) to NADP(+) has been constructed by introducing two single-point mutations, Asp(196)-->Ala (D196A) and Tyr(197)-->Arg (Y197R). The mutagenesis was based on the results of homology modelling of a NAD(+)-specific FDH from Saccharomyces cerevisiae (SceFDH) using the Pseudomonas sp.101 FDH (PseFDH) crystal structure as a template. The resulting model structure suggested that Asp(196) and Tyr(197) mediate the absolute coenzyme specificity of SceFDH for NAD(+).
Full Text
The Full Text of this article is available as a PDF (224.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bernard N., Johnsen K., Holbrook J. J., Delcour J. D175 discriminates between NADH and NADPH in the coenzyme binding site of Lactobacillus delbrueckii subsp. bulgaricus D-lactate dehydrogenase. Biochem Biophys Res Commun. 1995 Mar 28;208(3):895–900. doi: 10.1006/bbrc.1995.1419. [DOI] [PubMed] [Google Scholar]
- Bocanegra J. A., Scrutton N. S., Perham R. N. Creation of an NADP-dependent pyruvate dehydrogenase multienzyme complex by protein engineering. Biochemistry. 1993 Mar 23;32(11):2737–2740. doi: 10.1021/bi00062a001. [DOI] [PubMed] [Google Scholar]
- Carugo O., Argos P. NADP-dependent enzymes. I: Conserved stereochemistry of cofactor binding. Proteins. 1997 May;28(1):10–28. doi: 10.1002/(sici)1097-0134(199705)28:1<10::aid-prot2>3.0.co;2-n. [DOI] [PubMed] [Google Scholar]
- Chen R., Greer A., Dean A. M. Redesigning secondary structure to invert coenzyme specificity in isopropylmalate dehydrogenase. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12171–12176. doi: 10.1073/pnas.93.22.12171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen Z., Lee W. R., Chang S. H. Role of aspartic acid 38 in the cofactor specificity of Drosophila alcohol dehydrogenase. Eur J Biochem. 1991 Dec 5;202(2):263–267. doi: 10.1111/j.1432-1033.1991.tb16371.x. [DOI] [PubMed] [Google Scholar]
- Colas des Francs-Small C., Ambard-Bretteville F., Small I. D., Rémy R. Identification of a major soluble protein in mitochondria from nonphotosynthetic tissues as NAD-dependent formate dehydrogenase. Plant Physiol. 1993 Aug;102(4):1171–1177. doi: 10.1104/pp.102.4.1171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hummel W., Kula M. R. Dehydrogenases for the synthesis of chiral compounds. Eur J Biochem. 1989 Sep 1;184(1):1–13. doi: 10.1111/j.1432-1033.1989.tb14983.x. [DOI] [PubMed] [Google Scholar]
- Hummel W. Large-scale applications of NAD(P)-dependent oxidoreductases: recent developments. Trends Biotechnol. 1999 Dec;17(12):487–492. doi: 10.1016/s0167-7799(98)01207-4. [DOI] [PubMed] [Google Scholar]
- Kato N., Sahm H., Wagner F. Steady-state kinetics of formaldehyde dehydrogenase and formate dehydrogenase from a methanol-utilizing yeast, Candida boidinii. Biochim Biophys Acta. 1979 Jan 12;566(1):12–20. doi: 10.1016/0005-2744(79)90243-2. [DOI] [PubMed] [Google Scholar]
- Labrou N. E., Rigden D. J., Clonis Y. D. Characterization of the NAD+ binding site of Candida boidinii formate dehydrogenase by affinity labelling and site-directed mutagenesis. Eur J Biochem. 2000 Nov;267(22):6657–6664. doi: 10.1046/j.1432-1327.2000.01761.x. [DOI] [PubMed] [Google Scholar]
- Lamzin V. S., Dauter Z., Popov V. O., Harutyunyan E. H., Wilson K. S. High resolution structures of holo and apo formate dehydrogenase. J Mol Biol. 1994 Feb 25;236(3):759–785. doi: 10.1006/jmbi.1994.1188. [DOI] [PubMed] [Google Scholar]
- Peacock D., Boulter D. Kinetic studies of formate dehydrogenase. Biochem J. 1970 Dec;120(4):763–769. doi: 10.1042/bj1200763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Popov V. O., Lamzin V. S. NAD(+)-dependent formate dehydrogenase. Biochem J. 1994 Aug 1;301(Pt 3):625–643. doi: 10.1042/bj3010625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scrutton N. S., Berry A., Perham R. N. Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature. 1990 Jan 4;343(6253):38–43. doi: 10.1038/343038a0. [DOI] [PubMed] [Google Scholar]
- Serov A. E., Popova A. S., Tishkov V. I. The kinetic mechanism of formate dehydrogenase from bakery yeast. Dokl Biochem Biophys. 2002 Jan-Feb;382:26–30. doi: 10.1023/a:1014451106193. [DOI] [PubMed] [Google Scholar]
- Tishkov V. I., Galkin A. G., Fedorchuk V. V., Savitsky P. A., Rojkova A. M., Gieren H., Kula M. R. Pilot scale production and isolation of recombinant NAD+- and NADP+-specific formate dehydrogenases. Biotechnol Bioeng. 1999 Jul 20;64(2):187–193. [PubMed] [Google Scholar]
- Tishkov V. I., Matorin A. D., Rojkova A. M., Fedorchuk V. V., Savitsky P. A., Dementieva L. A., Lamzin V. S., Mezentzev A. V., Popov V. O. Site-directed mutagenesis of the formate dehydrogenase active centre: role of the His332-Gln313 pair in enzyme catalysis. FEBS Lett. 1996 Jul 15;390(1):104–108. doi: 10.1016/0014-5793(96)00641-2. [DOI] [PubMed] [Google Scholar]
- Vinals C., Depiereux E., Feytmans E. Prediction of structurally conserved regions of D-specific hydroxy acid dehydrogenases by multiple alignment with formate dehydrogenase. Biochem Biophys Res Commun. 1993 Apr 15;192(1):182–188. doi: 10.1006/bbrc.1993.1398. [DOI] [PubMed] [Google Scholar]
- Zaks A. M., Avilova T. V., Egorova O. A., Popov V. O., Egorov A. M. Kineticheskii mekhanizm deistviia NAD-zavisimoi formiatdegidrogenazy metilotrofnykh drozhzhei Candida methylica. Biokhimiia. 1982 Apr;47(4):546–551. [PubMed] [Google Scholar]