Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Nov 1;367(Pt 3):907–911. doi: 10.1042/BJ20021085

Small ubiquitin-related modifier-1 (SUMO-1) modification of the glucocorticoid receptor.

Sha Tian 1, Hetti Poukka 1, Jorma J Palvimo 1, Olli A Jänne 1
PMCID: PMC1222934  PMID: 12144530

Abstract

Small ubiquitin-related modifier-1 (SUMO-1) is covalently attached to many cellular targets to regulate protein-protein and protein-DNA interactions, as well as localization and stability of the target protein. The SUMO-1-conjugating E2 enzyme Ubc9 is known to interact with the glucocorticoid receptor (GR), a ligand-dependent transcription factor. In the present study, we show that GR is post-translationally modified by SUMO-1 (sumoylated) in a ligand-enhanced fashion. We identify experimentally three consensus SUMO attachment sites, two in the N-terminal transactivation region and one in the ligand-binding domain of GR. The two N-terminal sites are the major acceptor sites for SUMO-1 attachment. Mutation of these sites enhances transcriptional activity of GR on minimal promoters, but has no clear effect on the more complex mouse mammary tumour virus promoter. Thus SUMO-1 modification of GR influences receptor function in a promoter context-dependent fashion.

Full Text

The Full Text of this article is available as a PDF (203.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bies Juraj, Markus Ján, Wolff Linda. Covalent attachment of the SUMO-1 protein to the negative regulatory domain of the c-Myb transcription factor modifies its stability and transactivation capacity. J Biol Chem. 2002 Jan 4;277(11):8999–9009. doi: 10.1074/jbc.M110453200. [DOI] [PubMed] [Google Scholar]
  2. Desterro J. M., Rodriguez M. S., Hay R. T. SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell. 1998 Aug;2(2):233–239. doi: 10.1016/s1097-2765(00)80133-1. [DOI] [PubMed] [Google Scholar]
  3. Glass C. K., Rosenfeld M. G. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 2000 Jan 15;14(2):121–141. [PubMed] [Google Scholar]
  4. Gostissa M., Hengstermann A., Fogal V., Sandy P., Schwarz S. E., Scheffner M., Del Sal G. Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J. 1999 Nov 15;18(22):6462–6471. doi: 10.1093/emboj/18.22.6462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hovland A. R., Powell R. L., Takimoto G. S., Tung L., Horwitz K. B. An N-terminal inhibitory function, IF, suppresses transcription by the A-isoform but not the B-isoform of human progesterone receptors. J Biol Chem. 1998 Mar 6;273(10):5455–5460. doi: 10.1074/jbc.273.10.5455. [DOI] [PubMed] [Google Scholar]
  6. Ikonen T., Palvimo J. J., Jänne O. A. Interaction between the amino- and carboxyl-terminal regions of the rat androgen receptor modulates transcriptional activity and is influenced by nuclear receptor coactivators. J Biol Chem. 1997 Nov 21;272(47):29821–29828. doi: 10.1074/jbc.272.47.29821. [DOI] [PubMed] [Google Scholar]
  7. Ishov A. M., Sotnikov A. G., Negorev D., Vladimirova O. V., Neff N., Kamitani T., Yeh E. T., Strauss J. F., 3rd, Maul G. G. PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J Cell Biol. 1999 Oct 18;147(2):221–234. doi: 10.1083/jcb.147.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Iñiguez-Lluhí J. A., Pearce D. A common motif within the negative regulatory regions of multiple factors inhibits their transcriptional synergy. Mol Cell Biol. 2000 Aug;20(16):6040–6050. doi: 10.1128/mcb.20.16.6040-6050.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Johnson E. S., Blobel G. Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J Cell Biol. 1999 Nov 29;147(5):981–994. doi: 10.1083/jcb.147.5.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Johnson E. S., Blobel G. Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J Biol Chem. 1997 Oct 24;272(43):26799–26802. doi: 10.1074/jbc.272.43.26799. [DOI] [PubMed] [Google Scholar]
  11. Johnson E. S., Gupta A. A. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell. 2001 Sep 21;106(6):735–744. doi: 10.1016/s0092-8674(01)00491-3. [DOI] [PubMed] [Google Scholar]
  12. Johnson E. S., Schwienhorst I., Dohmen R. J., Blobel G. The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J. 1997 Sep 15;16(18):5509–5519. doi: 10.1093/emboj/16.18.5509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Joseph Jomon, Tan Shyh-Han, Karpova Tatiana S., McNally James G., Dasso Mary. SUMO-1 targets RanGAP1 to kinetochores and mitotic spindles. J Cell Biol. 2002 Feb 18;156(4):595–602. doi: 10.1083/jcb.200110109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kahyo T., Nishida T., Yasuda H. Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Mol Cell. 2001 Sep;8(3):713–718. doi: 10.1016/s1097-2765(01)00349-5. [DOI] [PubMed] [Google Scholar]
  15. Karin M. New twists in gene regulation by glucocorticoid receptor: is DNA binding dispensable? Cell. 1998 May 15;93(4):487–490. doi: 10.1016/s0092-8674(00)81177-0. [DOI] [PubMed] [Google Scholar]
  16. Kaul Sunil, Blackford John A., Jr, Cho Sehyung, Simons S. Stoney., Jr Ubc9 is a novel modulator of the induction properties of glucocorticoid receptors. J Biol Chem. 2002 Jan 25;277(15):12541–12549. doi: 10.1074/jbc.M112330200. [DOI] [PubMed] [Google Scholar]
  17. Kotaja Noora, Karvonen Ulla, Jänne Olli A., Palvimo Jorma J. PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol Cell Biol. 2002 Jul;22(14):5222–5234. doi: 10.1128/MCB.22.14.5222-5234.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lange C. A., Shen T., Horwitz K. B. Phosphorylation of human progesterone receptors at serine-294 by mitogen-activated protein kinase signals their degradation by the 26S proteasome. Proc Natl Acad Sci U S A. 2000 Feb 1;97(3):1032–1037. doi: 10.1073/pnas.97.3.1032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Li S. J., Hochstrasser M. A new protease required for cell-cycle progression in yeast. Nature. 1999 Mar 18;398(6724):246–251. doi: 10.1038/18457. [DOI] [PubMed] [Google Scholar]
  20. Li X. Y., Boudjelal M., Xiao J. H., Peng Z. H., Asuru A., Kang S., Fisher G. J., Voorhees J. J. 1,25-Dihydroxyvitamin D3 increases nuclear vitamin D3 receptors by blocking ubiquitin/proteasome-mediated degradation in human skin. Mol Endocrinol. 1999 Oct;13(10):1686–1694. doi: 10.1210/mend.13.10.0362. [DOI] [PubMed] [Google Scholar]
  21. Mahajan R., Delphin C., Guan T., Gerace L., Melchior F. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell. 1997 Jan 10;88(1):97–107. doi: 10.1016/s0092-8674(00)81862-0. [DOI] [PubMed] [Google Scholar]
  22. Matunis M. J., Wu J., Blobel G. SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J Cell Biol. 1998 Feb 9;140(3):499–509. doi: 10.1083/jcb.140.3.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Melchior F. SUMO--nonclassical ubiquitin. Annu Rev Cell Dev Biol. 2000;16:591–626. doi: 10.1146/annurev.cellbio.16.1.591. [DOI] [PubMed] [Google Scholar]
  24. Moilanen A. M., Poukka H., Karvonen U., Häkli M., Jänne O. A., Palvimo J. J. Identification of a novel RING finger protein as a coregulator in steroid receptor-mediated gene transcription. Mol Cell Biol. 1998 Sep;18(9):5128–5139. doi: 10.1128/mcb.18.9.5128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Muller S., Berger M., Lehembre F., Seeler J. S., Haupt Y., Dejean A. c-Jun and p53 activity is modulated by SUMO-1 modification. J Biol Chem. 2000 May 5;275(18):13321–13329. doi: 10.1074/jbc.275.18.13321. [DOI] [PubMed] [Google Scholar]
  26. Müller S., Matunis M. J., Dejean A. Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J. 1998 Jan 2;17(1):61–70. doi: 10.1093/emboj/17.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nawaz Z., Lonard D. M., Dennis A. P., Smith C. L., O'Malley B. W. Proteasome-dependent degradation of the human estrogen receptor. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):1858–1862. doi: 10.1073/pnas.96.5.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pichler Andrea, Gast Andreas, Seeler Jacob S., Dejean Anne, Melchior Frauke. The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell. 2002 Jan 11;108(1):109–120. doi: 10.1016/s0092-8674(01)00633-x. [DOI] [PubMed] [Google Scholar]
  29. Poukka H., Aarnisalo P., Karvonen U., Palvimo J. J., Jänne O. A. Ubc9 interacts with the androgen receptor and activates receptor-dependent transcription. J Biol Chem. 1999 Jul 2;274(27):19441–19446. doi: 10.1074/jbc.274.27.19441. [DOI] [PubMed] [Google Scholar]
  30. Poukka H., Karvonen U., Janne O. A., Palvimo J. J. Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14145–14150. doi: 10.1073/pnas.97.26.14145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rodriguez M. S., Dargemont C., Hay R. T. SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem. 2000 Dec 21;276(16):12654–12659. doi: 10.1074/jbc.M009476200. [DOI] [PubMed] [Google Scholar]
  32. Rodriguez M. S., Desterro J. M., Lain S., Midgley C. A., Lane D. P., Hay R. T. SUMO-1 modification activates the transcriptional response of p53. EMBO J. 1999 Nov 15;18(22):6455–6461. doi: 10.1093/emboj/18.22.6455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sachdev S., Bruhn L., Sieber H., Pichler A., Melchior F., Grosschedl R. PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev. 2001 Dec 1;15(23):3088–3103. doi: 10.1101/gad.944801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schmidt Darja, Müller Stefan. Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc Natl Acad Sci U S A. 2002 Feb 26;99(5):2872–2877. doi: 10.1073/pnas.052559499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schoenmakers E., Alen P., Verrijdt G., Peeters B., Verhoeven G., Rombauts W., Claessens F. Differential DNA binding by the androgen and glucocorticoid receptors involves the second Zn-finger and a C-terminal extension of the DNA-binding domains. Biochem J. 1999 Aug 1;341(Pt 3):515–521. [PMC free article] [PubMed] [Google Scholar]
  36. Seeler J. S., Marchio A., Losson R., Desterro J. M., Hay R. T., Chambon P., Dejean A. Common properties of nuclear body protein SP100 and TIF1alpha chromatin factor: role of SUMO modification. Mol Cell Biol. 2001 May;21(10):3314–3324. doi: 10.1128/MCB.21.10.3314-3324.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sternsdorf T., Jensen K., Reich B., Will H. The nuclear dot protein sp100, characterization of domains necessary for dimerization, subcellular localization, and modification by small ubiquitin-like modifiers. J Biol Chem. 1999 Apr 30;274(18):12555–12566. doi: 10.1074/jbc.274.18.12555. [DOI] [PubMed] [Google Scholar]
  38. Suzuki T., Ichiyama A., Saitoh H., Kawakami T., Omata M., Chung C. H., Kimura M., Shimbara N., Tanaka K. A new 30-kDa ubiquitin-related SUMO-1 hydrolase from bovine brain. J Biol Chem. 1999 Oct 29;274(44):31131–31134. doi: 10.1074/jbc.274.44.31131. [DOI] [PubMed] [Google Scholar]
  39. Wang C., Fu M., Angeletti R. H., Siconolfi-Baez L., Reutens A. T., Albanese C., Lisanti M. P., Katzenellenbogen B. S., Kato S., Hopp T. Direct acetylation of the estrogen receptor alpha hinge region by p300 regulates transactivation and hormone sensitivity. J Biol Chem. 2001 Mar 9;276(21):18375–18383. doi: 10.1074/jbc.M100800200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES