Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is an important incretin hormone, which potentiates glucose-induced insulin secretion. Antihyperglycaemic actions of GIP provide significant potential in Type II diabetes therapy. However, inactivation of GIP by the enzyme dipeptidyl peptidase IV (DPP IV) and its consequent short circulating half-life limit its therapeutic use. Therefore two novel Tyr(1)-modified analogues of GIP, N-Fmoc-GIP (where Fmoc is 9-fluorenylmethoxycarbonyl) and N-palmitate-GIP, were synthesized and tested for metabolic stability and biological activity. Both GIP analogues were resistant to degradation by DPP IV and human plasma. In Chinese hamster lung (CHL) cells expressing the cloned human GIP receptor, both analogues exhibited a 2-fold increase in cAMP-generating potency compared with native GIP (EC(50) values of 9.4, 10.0 and 18.2 nM respectively). Using clonal BRIN-BD11 cells, both analogues demonstrated strong insulinotropic activity compared with native GIP ( P <0.01 to P <0.001). In obese diabetic ( ob / ob ) mice, administration of N-Fmoc-GIP or N-palmitate-GIP (25 nmol/kg) together with glucose (18 mmol/kg) significantly reduced the peak 15 min glucose excursion (1.4- and 1.5-fold respectively; P <0.05 to P <0.01) compared with glucose alone. The area under the curve (AUC) for glucose was significantly lower after administration of either analogue compared with glucose administered alone or in combination with native GIP (1.5-fold; P <0.05). This was associated with a significantly greater AUC for insulin (2.1-fold; P <0.001) for both analogues compared with native GIP. A similar pattern of in vivo responsiveness was evident in lean control mice. These data indicate that novel N-terminal Tyr(1) modification of GIP with an Fmoc or palmitate group confers resistance to degradation by DPP IV in plasma, which is reflected by increased in vitro potency and greater insulinotropic and antihyperglycaemic activities in an animal model of Type II diabetes mellitus.
Full Text
The Full Text of this article is available as a PDF (265.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahrén B., Larsson H., Holst J. J. Reduced gastric inhibitory polypeptide but normal glucagon-like peptide 1 response to oral glucose in postmenopausal women with impaired glucose tolerance. Eur J Endocrinol. 1997 Aug;137(2):127–131. doi: 10.1530/eje.0.1370127. [DOI] [PubMed] [Google Scholar]
- Bailey C. J., Flatt P. R., Atkins T. W. Influence of genetic background and age on the expression of the obese hyperglycaemic syndrome in Aston ob/ob mice. Int J Obes. 1982;6(1):11–21. [PubMed] [Google Scholar]
- Burcelin R., Dolci W., Thorens B. Long-lasting antidiabetic effect of a dipeptidyl peptidase IV-resistant analog of glucagon-like peptide-1. Metabolism. 1999 Feb;48(2):252–258. doi: 10.1016/s0026-0495(99)90043-4. [DOI] [PubMed] [Google Scholar]
- Deacon C. F., Danielsen P., Klarskov L., Olesen M., Holst J. J. Dipeptidyl peptidase IV inhibition reduces the degradation and clearance of GIP and potentiates its insulinotropic and antihyperglycemic effects in anesthetized pigs. Diabetes. 2001 Jul;50(7):1588–1597. doi: 10.2337/diabetes.50.7.1588. [DOI] [PubMed] [Google Scholar]
- Deacon C. F., Knudsen L. B., Madsen K., Wiberg F. C., Jacobsen O., Holst J. J. Dipeptidyl peptidase IV resistant analogues of glucagon-like peptide-1 which have extended metabolic stability and improved biological activity. Diabetologia. 1998 Mar;41(3):271–278. doi: 10.1007/s001250050903. [DOI] [PubMed] [Google Scholar]
- Deacon C. F., Pridal L., Klarskov L., Olesen M., Holst J. J. Glucagon-like peptide 1 undergoes differential tissue-specific metabolism in the anesthetized pig. Am J Physiol. 1996 Sep;271(3 Pt 1):E458–E464. doi: 10.1152/ajpendo.1996.271.3.E458. [DOI] [PubMed] [Google Scholar]
- Ebert R., Nauck M., Creutzfeldt W. Effect of exogenous or endogenous gastric inhibitory polypeptide (GIP) on plasma triglyceride responses in rats. Horm Metab Res. 1991 Nov;23(11):517–521. doi: 10.1055/s-2007-1003745. [DOI] [PubMed] [Google Scholar]
- Eckel R. H., Fujimoto W. Y., Brunzell J. D. Gastric inhibitory polypeptide enhanced lipoprotein lipase activity in cultured preadipocytes. Diabetes. 1979 Dec;28(12):1141–1142. doi: 10.2337/diab.28.12.1141. [DOI] [PubMed] [Google Scholar]
- Fields G. B., Noble R. L. Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res. 1990 Mar;35(3):161–214. doi: 10.1111/j.1399-3011.1990.tb00939.x. [DOI] [PubMed] [Google Scholar]
- Flatt P. R., Bailey C. J. Abnormal plasma glucose and insulin responses in heterozygous lean (ob/+) mice. Diabetologia. 1981 May;20(5):573–577. doi: 10.1007/BF00252768. [DOI] [PubMed] [Google Scholar]
- Flatt P. R., Bailey C. J., Kwasowski P., Page T., Marks V. Plasma immunoreactive gastric inhibitory polypeptide in obese hyperglycaemic (ob/ob) mice. J Endocrinol. 1984 Jun;101(3):249–256. doi: 10.1677/joe.0.1010249. [DOI] [PubMed] [Google Scholar]
- Fukase N., Igarashi M., Takahashi H., Manaka H., Yamatani K., Daimon M., Tominaga M., Sasaki H. Hypersecretion of truncated glucagon-like peptide-1 and gastric inhibitory polypeptide in obese patients. Diabet Med. 1993 Jan-Feb;10(1):44–49. doi: 10.1111/j.1464-5491.1993.tb01995.x. [DOI] [PubMed] [Google Scholar]
- Gelling R. W., Coy D. H., Pederson R. A., Wheeler M. B., Hinke S., Kwan T., McIntosh C. H. GIP(6-30amide) contains the high affinity binding region of GIP and is a potent inhibitor of GIP1-42 action in vitro. Regul Pept. 1997 Apr 30;69(3):151–154. doi: 10.1016/s0167-0115(97)00009-8. [DOI] [PubMed] [Google Scholar]
- Gremlich S., Porret A., Hani E. H., Cherif D., Vionnet N., Froguel P., Thorens B. Cloning, functional expression, and chromosomal localization of the human pancreatic islet glucose-dependent insulinotropic polypeptide receptor. Diabetes. 1995 Oct;44(10):1202–1208. doi: 10.2337/diab.44.10.1202. [DOI] [PubMed] [Google Scholar]
- Hartmann H., Ebert R., Creutzfeldt W. Insulin-dependent inhibition of hepatic glycogenolysis by gastric inhibitory polypeptide (GIP) in perfused rat liver. Diabetologia. 1986 Feb;29(2):112–114. doi: 10.1007/BF00456120. [DOI] [PubMed] [Google Scholar]
- Holst J. J. Glucagon-like peptide-1, a gastrointestinal hormone with a pharmaceutical potential. Curr Med Chem. 1999 Nov;6(11):1005–1017. [PubMed] [Google Scholar]
- Jones I. R., Owens D. R., Luzio S., Williams S., Hayes T. M. The glucose dependent insulinotropic polypeptide response to oral glucose and mixed meals is increased in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1989 Sep;32(9):668–677. doi: 10.1007/BF00274255. [DOI] [PubMed] [Google Scholar]
- Jorde R., Burhol P. G., Gunnes P., Schulz T. B. Removal of IR-GIP by the kidneys in man, and the effect of acute nephrectomy on plasma GIP in rats. Scand J Gastroenterol. 1981;16(4):469–471. doi: 10.3109/00365528109182000. [DOI] [PubMed] [Google Scholar]
- Kieffer T. J., McIntosh C. H., Pederson R. A. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology. 1995 Aug;136(8):3585–3596. doi: 10.1210/endo.136.8.7628397. [DOI] [PubMed] [Google Scholar]
- Knudsen L. B., Nielsen P. F., Huusfeldt P. O., Johansen N. L., Madsen K., Pedersen F. Z., Thøgersen H., Wilken M., Agersø H. Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration. J Med Chem. 2000 May 4;43(9):1664–1669. doi: 10.1021/jm9909645. [DOI] [PubMed] [Google Scholar]
- Kurtzhals P., Havelund S., Jonassen I., Kiehr B., Ribel U., Markussen J. Albumin binding and time action of acylated insulins in various species. J Pharm Sci. 1996 Mar;85(3):304–308. doi: 10.1021/js950412j. [DOI] [PubMed] [Google Scholar]
- Markussen J., Havelund S., Kurtzhals P., Andersen A. S., Halstrøm J., Hasselager E., Larsen U. D., Ribel U., Schäffer L., Vad K. Soluble, fatty acid acylated insulins bind to albumin and show protracted action in pigs. Diabetologia. 1996 Mar;39(3):281–288. doi: 10.1007/BF00418343. [DOI] [PubMed] [Google Scholar]
- McClenaghan N. H., Barnett C. R., Ah-Sing E., Abdel-Wahab Y. H., O'Harte F. P., Yoon T. W., Swanston-Flatt S. K., Flatt P. R. Characterization of a novel glucose-responsive insulin-secreting cell line, BRIN-BD11, produced by electrofusion. Diabetes. 1996 Aug;45(8):1132–1140. doi: 10.2337/diab.45.8.1132. [DOI] [PubMed] [Google Scholar]
- Mentlein R., Gallwitz B., Schmidt W. E. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem. 1993 Jun 15;214(3):829–835. doi: 10.1111/j.1432-1033.1993.tb17986.x. [DOI] [PubMed] [Google Scholar]
- Morgan L. M. The metabolic role of GIP: physiology and pathology. Biochem Soc Trans. 1996 May;24(2):585–591. doi: 10.1042/bst0240585. [DOI] [PubMed] [Google Scholar]
- Myers S. R., Yakubu-Madus F. E., Johnson W. T., Baker J. E., Cusick T. S., Williams V. K., Tinsley F. C., Kriauciunas A., Manetta J., Chen V. J. Acylation of human insulin with palmitic acid extends the time action of human insulin in diabetic dogs. Diabetes. 1997 Apr;46(4):637–642. doi: 10.2337/diab.46.4.637. [DOI] [PubMed] [Google Scholar]
- Nauck M. A., Bartels E., Orskov C., Ebert R., Creutzfeldt W. Additive insulinotropic effects of exogenous synthetic human gastric inhibitory polypeptide and glucagon-like peptide-1-(7-36) amide infused at near-physiological insulinotropic hormone and glucose concentrations. J Clin Endocrinol Metab. 1993 Apr;76(4):912–917. doi: 10.1210/jcem.76.4.8473405. [DOI] [PubMed] [Google Scholar]
- O'Dorisio T. M., Sirinek K. R., Mazzaferri E. L., Cataland S. Renal effects on serum gastric inhibitory polypeptide (GIP). Metabolism. 1977 Jun;26(6):651–656. doi: 10.1016/0026-0495(77)90086-5. [DOI] [PubMed] [Google Scholar]
- O'Harte F. P., Abdel-Wahab Y. H., Conlon J. M., Flatt P. R. Amino terminal glycation of gastric inhibitory polypeptide enhances its insulinotropic action on clonal pancreatic B-cells. Biochim Biophys Acta. 1998 Oct 23;1425(2):319–327. doi: 10.1016/s0304-4165(98)00084-1. [DOI] [PubMed] [Google Scholar]
- O'Harte F. P., Gray A. M., Flatt P. R. Gastric inhibitory polypeptide and effects of glycation on glucose transport and metabolism in isolated mouse abdominal muscle. J Endocrinol. 1998 Feb;156(2):237–243. doi: 10.1677/joe.0.1560237. [DOI] [PubMed] [Google Scholar]
- O'Harte F. P., Mooney M. H., Flatt P. R. NH2-terminally modified gastric inhibitory polypeptide exhibits amino-peptidase resistance and enhanced antihyperglycemic activity. Diabetes. 1999 Apr;48(4):758–765. doi: 10.2337/diabetes.48.4.758. [DOI] [PubMed] [Google Scholar]
- O'Harte F. P., Mooney M. H., Kelly C. M., Flatt P. R. Improved glycaemic control in obese diabetic ob/ob mice using N-terminally modified gastric inhibitory polypeptide. J Endocrinol. 2000 Jun;165(3):639–648. doi: 10.1677/joe.0.1650639. [DOI] [PubMed] [Google Scholar]
- Oben J., Morgan L., Fletcher J., Marks V. Effect of the entero-pancreatic hormones, gastric inhibitory polypeptide and glucagon-like polypeptide-1(7-36) amide, on fatty acid synthesis in explants of rat adipose tissue. J Endocrinol. 1991 Aug;130(2):267–272. doi: 10.1677/joe.0.1300267. [DOI] [PubMed] [Google Scholar]
- Parsons T. J., van Dusseldorp M., Seibel M. J., van Staveren W. A. Are levels of bone turnover related to lower bone mass of adolescents previously fed a macrobiotic diet? Exp Clin Endocrinol Diabetes. 2001;109(5):288–293. doi: 10.1055/s-2001-16349. [DOI] [PubMed] [Google Scholar]
- Pauly R. P., Demuth H. U., Rosche F., Schmidt J., White H. A., Lynn F., McIntosh C. H., Pederson R. A. Improved glucose tolerance in rats treated with the dipeptidyl peptidase IV (CD26) inhibitor Ile-thiazolidide. Metabolism. 1999 Mar;48(3):385–389. doi: 10.1016/s0026-0495(99)90090-2. [DOI] [PubMed] [Google Scholar]
- Pauly R. P., Rosche F., Wermann M., McIntosh C. H., Pederson R. A., Demuth H. U. Investigation of glucose-dependent insulinotropic polypeptide-(1-42) and glucagon-like peptide-1-(7-36) degradation in vitro by dipeptidyl peptidase IV using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. A novel kinetic approach. J Biol Chem. 1996 Sep 20;271(38):23222–23229. doi: 10.1074/jbc.271.38.23222. [DOI] [PubMed] [Google Scholar]
- Pederson R. A., White H. A., Schlenzig D., Pauly R. P., McIntosh C. H., Demuth H. U. Improved glucose tolerance in Zucker fatty rats by oral administration of the dipeptidyl peptidase IV inhibitor isoleucine thiazolidide. Diabetes. 1998 Aug;47(8):1253–1258. doi: 10.2337/diab.47.8.1253. [DOI] [PubMed] [Google Scholar]
- Rachman J., Turner R. C. Drugs on the horizon for treatment of type 2 diabetes. Diabet Med. 1995 Jun;12(6):467–478. doi: 10.1111/j.1464-5491.1995.tb00526.x. [DOI] [PubMed] [Google Scholar]
- Ritzel U., Leonhardt U., Ottleben M., Rühmann A., Eckart K., Spiess J., Ramadori G. A synthetic glucagon-like peptide-1 analog with improved plasma stability. J Endocrinol. 1998 Oct;159(1):93–102. doi: 10.1677/joe.0.1590093. [DOI] [PubMed] [Google Scholar]
- Ruiz-Grande C., Alarcón C., Alcántara A., Castilla C., López Novoa J. M., Villanueva-Peñacarrillo M. L., Valverde I. Renal catabolism of truncated glucagon-like peptide 1. Horm Metab Res. 1993 Dec;25(12):612–616. doi: 10.1055/s-2007-1002190. [DOI] [PubMed] [Google Scholar]
- Schmidt W. E., Siegel E. G., Kümmel H., Gallwitz B., Creutzfeldt W. Commercially available preparations of porcine glucose-dependent insulinotropic polypeptide (GIP) contain a biologically inactive GIP-fragment and cholecystokinin-33/-39. Endocrinology. 1987 Feb;120(2):835–837. doi: 10.1210/endo-120-2-835. [DOI] [PubMed] [Google Scholar]
- Sirinek K. R., O'Dorisio T. M., Gaskill H. V., Levine B. A. Chronic renal failure: effect of hemodialysis on gastrointestinal hormones. Am J Surg. 1984 Dec;148(6):732–735. doi: 10.1016/0002-9610(84)90426-4. [DOI] [PubMed] [Google Scholar]
- Stevens J. F. Determination of glucose by an automatic analyser. Clin Chim Acta. 1971 Apr;32(2):199–201. doi: 10.1016/0009-8981(71)90332-9. [DOI] [PubMed] [Google Scholar]
- Tseng C. C., Kieffer T. J., Jarboe L. A., Usdin T. B., Wolfe M. M. Postprandial stimulation of insulin release by glucose-dependent insulinotropic polypeptide (GIP). Effect of a specific glucose-dependent insulinotropic polypeptide receptor antagonist in the rat. J Clin Invest. 1996 Dec 1;98(11):2440–2445. doi: 10.1172/JCI119060. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tseng C. C., Zhang X. Y., Wolfe M. M. Effect of GIP and GLP-1 antagonists on insulin release in the rat. Am J Physiol. 1999 Jun;276(6 Pt 1):E1049–E1054. doi: 10.1152/ajpendo.1999.276.6.E1049. [DOI] [PubMed] [Google Scholar]
- Vaag A. A., Holst J. J., Vølund A., Beck-Nielsen H. B. Gut incretin hormones in identical twins discordant for non-insulin-dependent diabetes mellitus (NIDDM)--evidence for decreased glucagon-like peptide 1 secretion during oral glucose ingestion in NIDDM twins. Eur J Endocrinol. 1996 Oct;135(4):425–432. doi: 10.1530/eje.0.1350425. [DOI] [PubMed] [Google Scholar]
- Widmann C., Bürki E., Dolci W., Thorens B. Signal transduction by the cloned glucagon-like peptide-1 receptor: comparison with signaling by the endogenous receptors of beta cell lines. Mol Pharmacol. 1994 May;45(5):1029–1035. [PubMed] [Google Scholar]