Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Nov 1;367(Pt 3):609–616. doi: 10.1042/BJ20020371

Intestinal mucins from cystic fibrosis mice show increased fucosylation due to an induced Fucalpha1-2 glycosyltransferase.

Kristina A Thomsson 1, Marina Hinojosa-Kurtzberg 1, Karin A Axelsson 1, Steven E Domino 1, John B Lowe 1, Sandra J Gendler 1, Gunnar C Hansson 1
PMCID: PMC1222944  PMID: 12164788

Abstract

In gene-targeted mouse models for cystic fibrosis (CF), the disease is mainly manifested by mucus obstruction in the intestine. To explore the mucus composition, mucins insoluble and soluble in 6 M guanidinium chloride were purified by three rounds of isopycnic ultracentrifugation from the small and large intestines of CF mice (Cftr(m1UNC)/Cftr(m1UNC)) and compared with wild-type mice. The amino acid composition was typical of that for mucins and showed increased amounts of the insoluble (2.5-fold increase) and soluble (7-fold increase) mucins in the small intestine of the CF mice compared with wild-type mice. Mucins from the large intestine of both wild-type and CF mice showed a high but constant level of fucosylation. In contrast, the insoluble and soluble mucins of the small intestine in CF mice revealed a large increase in fucose, whereas those of wild-type mice contained only small amounts of fucose. This increased fucosylation was analysed by releasing the O-linked oligosaccharides followed by GC-MS. NMR spectroscopy revealed that the increased fucosylation was due to an increased expression of blood group H epitopes (Fucalpha1-2Gal-). Northern-blot analysis, using a probe for the murine Fucalpha1-2 fucosyltransferase (Fut2), showed an up-regulation of this mRNA in the small intestine of the CF mice, suggesting that this enzyme is responsible for the observed increase in blood group H-type glycosylation. The reason for this up-regulation could be a direct or indirect effect of a non-functional CF transmembrane conductance regulator (CFTR) caused by the absence of CFTR channel.

Full Text

The Full Text of this article is available as a PDF (174.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelsson M. A., Asker N., Hansson G. C. O-glycosylated MUC2 monomer and dimer from LS 174T cells are water-soluble, whereas larger MUC2 species formed early during biosynthesis are insoluble and contain nonreducible intermolecular bonds. J Biol Chem. 1998 Jul 24;273(30):18864–18870. doi: 10.1074/jbc.273.30.18864. [DOI] [PubMed] [Google Scholar]
  2. Axelsson M. A., Hansson E. M., Sikut R., Hansson G. C. Deglycosylation by gaseous hydrogen fluoride of mucus glycoproteins immobilized on nylon membranes and in microtiter wells. Glycoconj J. 1998 Aug;15(8):749–755. doi: 10.1023/a:1006935227730. [DOI] [PubMed] [Google Scholar]
  3. Bry L., Falk P. G., Midtvedt T., Gordon J. I. A model of host-microbial interactions in an open mammalian ecosystem. Science. 1996 Sep 6;273(5280):1380–1383. doi: 10.1126/science.273.5280.1380. [DOI] [PubMed] [Google Scholar]
  4. Carlstedt I., Herrmann A., Karlsson H., Sheehan J., Fransson L. A., Hansson G. C. Characterization of two different glycosylated domains from the insoluble mucin complex of rat small intestine. J Biol Chem. 1993 Sep 5;268(25):18771–18781. [PubMed] [Google Scholar]
  5. Carlstedt I., Lindgren H., Sheehan J. K., Ulmsten U., Wingerup L. Isolation and characterization of human cervical-mucus glycoproteins. Biochem J. 1983 Apr 1;211(1):13–22. doi: 10.1042/bj2110013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carnoy C., Ramphal R., Scharfman A., Lo-Guidice J. M., Houdret N., Klein A., Galabert C., Lamblin G., Roussel P. Altered carbohydrate composition of salivary mucins from patients with cystic fibrosis and the adhesion of Pseudomonas aeruginosa. Am J Respir Cell Mol Biol. 1993 Sep;9(3):323–334. doi: 10.1165/ajrcmb/9.3.323. [DOI] [PubMed] [Google Scholar]
  7. Cheng P. W., Boat T. F., Cranfill K., Yankaskas J. R., Boucher R. C. Increased sulfation of glycoconjugates by cultured nasal epithelial cells from patients with cystic fibrosis. J Clin Invest. 1989 Jul;84(1):68–72. doi: 10.1172/JCI114171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cheng S. H., Gregory R. J., Marshall J., Paul S., Souza D. W., White G. A., O'Riordan C. R., Smith A. E. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell. 1990 Nov 16;63(4):827–834. doi: 10.1016/0092-8674(90)90148-8. [DOI] [PubMed] [Google Scholar]
  9. Davril M., Degroote S., Humbert P., Galabert C., Dumur V., Lafitte J. J., Lamblin G., Roussel P. The sialylation of bronchial mucins secreted by patients suffering from cystic fibrosis or from chronic bronchitis is related to the severity of airway infection. Glycobiology. 1999 Mar;9(3):311–321. doi: 10.1093/glycob/9.3.311. [DOI] [PubMed] [Google Scholar]
  10. Domino S. E., Zhang L., Lowe J. B. Molecular cloning, genomic mapping, and expression of two secretor blood group alpha (1,2)fucosyltransferase genes differentially regulated in mouse uterine epithelium and gastrointestinal tract. J Biol Chem. 2001 Apr 25;276(26):23748–23756. doi: 10.1074/jbc.M100735200. [DOI] [PubMed] [Google Scholar]
  11. Grubb B. R., Boucher R. C. Pathophysiology of gene-targeted mouse models for cystic fibrosis. Physiol Rev. 1999 Jan;79(1 Suppl):S193–S214. doi: 10.1152/physrev.1999.79.1.S193. [DOI] [PubMed] [Google Scholar]
  12. Hansson G. C., Baeckström D., Carlstedt I., Klinga-Levan K. Molecular cloning of a cDNA coding for a region of an apoprotein from the 'insoluble' mucin complex of rat small intestine. Biochem Biophys Res Commun. 1994 Jan 14;198(1):181–190. doi: 10.1006/bbrc.1994.1026. [DOI] [PubMed] [Google Scholar]
  13. Herrmann A., Davies J. R., Lindell G., Mårtensson S., Packer N. H., Swallow D. M., Carlstedt I. Studies on the "insoluble" glycoprotein complex from human colon. Identification of reduction-insensitive MUC2 oligomers and C-terminal cleavage. J Biol Chem. 1999 May 28;274(22):15828–15836. doi: 10.1074/jbc.274.22.15828. [DOI] [PubMed] [Google Scholar]
  14. Karlsson H., Carlstedt I., Hansson G. C. The use of gas chromatography and gas chromatography-mass spectrometry for the characterization of permethylated oligosaccharides with molecular mass up to 2300. Anal Biochem. 1989 Nov 1;182(2):438–446. doi: 10.1016/0003-2697(89)90620-9. [DOI] [PubMed] [Google Scholar]
  15. Karlsson N. G., Hansson G. C. Analysis of monosaccharide composition of mucin oligosaccharide alditols by high-performance anion-exchange chromatography. Anal Biochem. 1995 Jan 20;224(2):538–541. doi: 10.1006/abio.1995.1084. [DOI] [PubMed] [Google Scholar]
  16. Karlsson N. G., Herrmann A., Karlsson H., Johansson M. E., Carlstedt I., Hansson G. C. The glycosylation of rat intestinal Muc2 mucin varies between rat strains and the small and large intestine. A study of O-linked oligosaccharides by a mass spectrometric approach. J Biol Chem. 1997 Oct 24;272(43):27025–27034. doi: 10.1074/jbc.272.43.27025. [DOI] [PubMed] [Google Scholar]
  17. Karlsson N. G., Johansson M. E., Asker N., Karlsson H., Gendler S. J., Carlstedt I., Hansson G. C. Molecular characterization of the large heavily glycosylated domain glycopeptide from the rat small intestinal Muc2 mucin. Glycoconj J. 1996 Oct;13(5):823–831. doi: 10.1007/BF00702346. [DOI] [PubMed] [Google Scholar]
  18. Karlsson N. G., Karlsson H., Hansson G. C. Strategy for the investigation of O-linked oligosaccharides from mucins based on the separation into neutral, sialic acid- and sulfate-containing species. Glycoconj J. 1995 Feb;12(1):69–76. doi: 10.1007/BF00731871. [DOI] [PubMed] [Google Scholar]
  19. Klein A., Lamblin G., Lhermitte M., Roussel P., Breg J., Van Halbeek H., Vliegenthart J. F. Primary structure of neutral oligosaccharides derived from respiratory-mucus glycoproteins of a patient suffering from bronchiectasis, determined by combination of 500-MHz 1H-NMR spectroscopy and quantitative sugar analysis. 1. Structure of 16 oligosaccharides having the Gal beta(1----3)GalNAc-ol core (type 1) or the Gal beta(1----3)[GlcNAc beta(1----6)]GalNac-ol core (type 2). Eur J Biochem. 1988 Feb 1;171(3):631–642. doi: 10.1111/j.1432-1033.1988.tb13834.x. [DOI] [PubMed] [Google Scholar]
  20. Koller B. H., Kim H. S., Latour A. M., Brigman K., Boucher R. C., Jr, Scambler P., Wainwright B., Smithies O. Toward an animal model of cystic fibrosis: targeted interruption of exon 10 of the cystic fibrosis transmembrane regulator gene in embryonic stem cells. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10730–10734. doi: 10.1073/pnas.88.23.10730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kälin N., Claass A., Sommer M., Puchelle E., Tümmler B. DeltaF508 CFTR protein expression in tissues from patients with cystic fibrosis. J Clin Invest. 1999 May 15;103(10):1379–1389. doi: 10.1172/JCI5731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Matsui H., Grubb B. R., Tarran R., Randell S. H., Gatzy J. T., Davis C. W., Boucher R. C. Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell. 1998 Dec 23;95(7):1005–1015. doi: 10.1016/s0092-8674(00)81724-9. [DOI] [PubMed] [Google Scholar]
  23. Parmley R. R., Gendler S. J. Cystic fibrosis mice lacking Muc1 have reduced amounts of intestinal mucus. J Clin Invest. 1998 Nov 15;102(10):1798–1806. doi: 10.1172/JCI3820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Riordan J. R., Rommens J. M., Kerem B., Alon N., Rozmahel R., Grzelczak Z., Zielenski J., Lok S., Plavsic N., Chou J. L. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989 Sep 8;245(4922):1066–1073. doi: 10.1126/science.2475911. [DOI] [PubMed] [Google Scholar]
  25. Rommens J. M., Iannuzzi M. C., Kerem B., Drumm M. L., Melmer G., Dean M., Rozmahel R., Cole J. L., Kennedy D., Hidaka N. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science. 1989 Sep 8;245(4922):1059–1065. doi: 10.1126/science.2772657. [DOI] [PubMed] [Google Scholar]
  26. Scanlin T. F., Glick M. C. Terminal glycosylation in cystic fibrosis. Biochim Biophys Acta. 1999 Oct 8;1455(2-3):241–253. doi: 10.1016/s0925-4439(99)00059-9. [DOI] [PubMed] [Google Scholar]
  27. Smith J. J., Travis S. M., Greenberg E. P., Welsh M. J. Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell. 1996 Apr 19;85(2):229–236. doi: 10.1016/s0092-8674(00)81099-5. [DOI] [PubMed] [Google Scholar]
  28. Thornton D. J., Holmes D. F., Sheehan J. K., Carlstedt I. Quantitation of mucus glycoproteins blotted onto nitrocellulose membranes. Anal Biochem. 1989 Oct;182(1):160–164. doi: 10.1016/0003-2697(89)90735-5. [DOI] [PubMed] [Google Scholar]
  29. Velcich Anna, Yang WanCai, Heyer Joerg, Fragale Alessandra, Nicholas Courtney, Viani Stephanie, Kucherlapati Raju, Lipkin Martin, Yang Kan, Augenlicht Leonard. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science. 2002 Mar 1;295(5560):1726–1729. doi: 10.1126/science.1069094. [DOI] [PubMed] [Google Scholar]
  30. Zhang Y., Doranz B., Yankaskas J. R., Engelhardt J. F. Genotypic analysis of respiratory mucous sulfation defects in cystic fibrosis. J Clin Invest. 1995 Dec;96(6):2997–3004. doi: 10.1172/JCI118372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. van Klinken B. J., Einerhand A. W., Duits L. A., Makkink M. K., Tytgat K. M., Renes I. B., Verburg M., Büller H. A., Dekker J. Gastrointestinal expression and partial cDNA cloning of murine Muc2. Am J Physiol. 1999 Jan;276(1 Pt 1):G115–G124. doi: 10.1152/ajpgi.1999.276.1.G115. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES