Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Nov 1;367(Pt 3):901–906. doi: 10.1042/BJ20020880

Mechanism by which metal cofactors control substrate specificity in pyrophosphatase.

Anton B Zyryanov 1, Alexander S Shestakov 1, Reijo Lahti 1, Alexander A Baykov 1
PMCID: PMC1222946  PMID: 12169093

Abstract

Family I soluble pyrophosphatases (PPases) exhibit appreciable ATPase activity in the presence of a number of transition metal ions, but not the physiological cofactor Mg(2+). The results of the present study reveal a strong correlation between the catalytic efficiency of three family I PPases (from Saccharomyces cerevisiae, Escherichia coli and rat liver) and one family II PPase (from Streptococcus mutans ) in ATP and tripolyphosphate (P(3)) hydrolysis in the presence of Mg(2+), Mn(2+), Zn(2+) and Co(2+) on the one hand, and the phosphate-binding affinity of the enzyme subsite P2 that interacts with the electrophilic terminal phosphate group of ATP on the other. A similar correlation was observed in S. cerevisiae PPase variants with modified P1 and P2 subsites. The effect of the above metal ion cofactors on ATP binding to S. cerevisiae PPase paralleled their effect on phosphate binding, resulting in a low affinity of Mg-PPase to ATP. We conclude that PPase mainly binds ATP and P(3) through the terminal phosphate group that is attacked by water. Moreover, this interaction is critical in creating a reactive geometry at the P2 site with these bulky substrates, which do not otherwise fit the active site perfectly. We propose further that ATP is not hydrolysed by Mg-PPase, since its interaction with the terminal phosphate is not adequately strong for proper positioning of the nucleophile-electrophile pair.

Full Text

The Full Text of this article is available as a PDF (155.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERGER L. Crystallization of the sodium salt of adenosine triphosphate. Biochim Biophys Acta. 1956 Apr;20(1):23–26. doi: 10.1016/0006-3002(56)90257-8. [DOI] [PubMed] [Google Scholar]
  2. Baykov A. A., Avaeva S. M. A simple and sensitive apparatus for continuous monitoring of orthophosphate in the presence of acid-labile compounds. Anal Biochem. 1981 Sep 1;116(1):1–4. doi: 10.1016/0003-2697(81)90313-4. [DOI] [PubMed] [Google Scholar]
  3. Baykov A. A., Avaeva S. M. Yeast inorganic pyrophosphatase: studies on metal binding. Eur J Biochem. 1974 Aug 15;47(1):57–66. doi: 10.1111/j.1432-1033.1974.tb03667.x. [DOI] [PubMed] [Google Scholar]
  4. Baykov A. A., Cooperman B. S., Goldman A., Lahti R. Cytoplasmic inorganic pyrophosphatase. Prog Mol Subcell Biol. 1999;23:127–150. doi: 10.1007/978-3-642-58444-2_7. [DOI] [PubMed] [Google Scholar]
  5. Baykov A. A., Fabrichniy I. P., Pohjanjoki P., Zyryanov A. B., Lahti R. Fluoride effects along the reaction pathway of pyrophosphatase: evidence for a second enzyme.pyrophosphate intermediate. Biochemistry. 2000 Oct 3;39(39):11939–11947. doi: 10.1021/bi000627u. [DOI] [PubMed] [Google Scholar]
  6. Baykov A. A., Shestakov A. S. Two pathways of pyrophosphate hydrolysis and synthesis by yeast inorganic pyrophosphatase. Eur J Biochem. 1992 Jun 1;206(2):463–470. doi: 10.1111/j.1432-1033.1992.tb16947.x. [DOI] [PubMed] [Google Scholar]
  7. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  8. CHARNEY J., FISHER W. P., HEGARTY C. P. Managanese as an essential element for sporulation in the genus Bacillus. J Bacteriol. 1951 Aug;62(2):145–148. doi: 10.1128/jb.62.2.145-148.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cooperman B. S., Panackal A., Springs B., Hamm D. J. Divalent metal ion, inorganic phosphate, and inorganic phosphate analogue binding to yeast inorganic pyrophosphatase. Biochemistry. 1981 Oct 13;20(21):6051–6060. doi: 10.1021/bi00524a021. [DOI] [PubMed] [Google Scholar]
  10. Guex N., Peitsch M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997 Dec;18(15):2714–2723. doi: 10.1002/elps.1150181505. [DOI] [PubMed] [Google Scholar]
  11. Harutyunyan E. H., Oganessyan V. Y., Oganessyan N. N., Avaeva S. M., Nazarova T. I., Vorobyeva N. N., Kurilova S. A., Huber R., Mather T. Crystal structure of holo inorganic pyrophosphatase from Escherichia coli at 1.9 A resolution. Mechanism of hydrolysis. Biochemistry. 1997 Jun 24;36(25):7754–7760. doi: 10.1021/bi962637u. [DOI] [PubMed] [Google Scholar]
  12. Heikinheimo P., Lehtonen J., Baykov A., Lahti R., Cooperman B. S., Goldman A. The structural basis for pyrophosphatase catalysis. Structure. 1996 Dec 15;4(12):1491–1508. doi: 10.1016/s0969-2126(96)00155-4. [DOI] [PubMed] [Google Scholar]
  13. Heikinheimo P., Pohjanjoki P., Helminen A., Tasanen M., Cooperman B. S., Goldman A., Baykov A., Lahti R. A site-directed mutagenesis study of Saccharomyces cerevisiae pyrophosphatase. Functional conservation of the active site of soluble inorganic pyrophosphatases. Eur J Biochem. 1996 Jul 1;239(1):138–143. doi: 10.1111/j.1432-1033.1996.0138u.x. [DOI] [PubMed] [Google Scholar]
  14. Heikinheimo P., Tuominen V., Ahonen A. K., Teplyakov A., Cooperman B. S., Baykov A. A., Lahti R., Goldman A. Toward a quantum-mechanical description of metal-assisted phosphoryl transfer in pyrophosphatase. Proc Natl Acad Sci U S A. 2001 Mar 6;98(6):3121–3126. doi: 10.1073/pnas.061612498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Höhne W. E., Heitmann P. Tripolyphosphate as a substrate of the inorganic pyrophosphatase from baker's yeast; the role of divalent metal ions. Acta Biol Med Ger. 1974;33(1):1–14. [PubMed] [Google Scholar]
  16. Josse J. Constitutive inorganic pyrophosphatase of Escherichia coli. 1. Purification and catalytic properties. J Biol Chem. 1966 May 10;241(9):1938–1947. [PubMed] [Google Scholar]
  17. KUNITZ M. Crystalline inorganic pyrophosphatase isolated from baker's yeast. J Gen Physiol. 1952 Jan;35(3):423–450. doi: 10.1085/jgp.35.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. KUNITZ M. Hydrolysis of adenosine triphosphate by crystalline yeast pyrophosphatase. Effect of zinc and magnesium ions. J Gen Physiol. 1962 Mar;45(4):31–46. doi: 10.1085/jgp.45.4.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kankare J., Salminen T., Lahti R., Cooperman B. S., Baykov A. A., Goldman A. Crystallographic identification of metal-binding sites in Escherichia coli inorganic pyrophosphatase. Biochemistry. 1996 Apr 16;35(15):4670–4677. doi: 10.1021/bi952637e. [DOI] [PubMed] [Google Scholar]
  20. Knight W. B., Ting S. J., Chuang S., Dunaway-Mariano D., Haromy T., Sundaralingam M. Yeast inorganic pyrophosphatase substrate recognition. Arch Biochem Biophys. 1983 Nov;227(1):302–309. doi: 10.1016/0003-9861(83)90374-0. [DOI] [PubMed] [Google Scholar]
  21. Kolakowski L. F., Jr, Schloesser M., Cooperman B. S. Cloning, molecular characterization and chromosome localization of the inorganic pyrophosphatase (PPA) gene from S. cerevisiae. Nucleic Acids Res. 1988 Nov 25;16(22):10441–10452. doi: 10.1093/nar/16.22.10441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Käpylä J., Hyytiä T., Lahti R., Goldman A., Baykov A. A., Cooperman B. S. Effect of D97E substitution on the kinetic and thermodynamic properties of Escherichia coli inorganic pyrophosphatase. Biochemistry. 1995 Jan 24;34(3):792–800. doi: 10.1021/bi00003a012. [DOI] [PubMed] [Google Scholar]
  23. Martin M. E., Byers B. R., Olson M. O., Salin M. L., Arceneaux J. E., Tolbert C. A Streptococcus mutans superoxide dismutase that is active with either manganese or iron as a cofactor. J Biol Chem. 1986 Jul 15;261(20):9361–9367. [PubMed] [Google Scholar]
  24. Mel'nik M. S., Nazarova T. I., Avaeva S. M. Metilpirofosfat--prosteishii organicheskii substrat neorganicheskoi pirofosfatazy iz drozhzhei. Biokhimiia. 1982 Feb;47(2):323–328. [PubMed] [Google Scholar]
  25. Merckel M. C., Fabrichniy I. P., Salminen A., Kalkkinen N., Baykov A. A., Lahti R., Goldman A. Crystal structure of Streptococcus mutans pyrophosphatase: a new fold for an old mechanism. Structure. 2001 Apr 4;9(4):289–297. doi: 10.1016/s0969-2126(01)00587-1. [DOI] [PubMed] [Google Scholar]
  26. Nyrén P., Lundin A. Enzymatic method for continuous monitoring of inorganic pyrophosphate synthesis. Anal Biochem. 1985 Dec;151(2):504–509. doi: 10.1016/0003-2697(85)90211-8. [DOI] [PubMed] [Google Scholar]
  27. Parfenyev A. N., Salminen A., Halonen P., Hachimori A., Baykov A. A., Lahti R. Quaternary structure and metal ion requirement of family II pyrophosphatases from Bacillus subtilis, Streptococcus gordonii, and Streptococcus mutans. J Biol Chem. 2001 May 7;276(27):24511–24518. doi: 10.1074/jbc.M101829200. [DOI] [PubMed] [Google Scholar]
  28. SCHLESINGER M. J., COON M. J. Hydrolysis of nucleoside diand triphosphates by crystalline preparations of yeast inorganic pyrophosphatase. Biochim Biophys Acta. 1960 Jun 17;41:30–36. doi: 10.1016/0006-3002(60)90365-6. [DOI] [PubMed] [Google Scholar]
  29. Shintani T., Uchiumi T., Yonezawa T., Salminen A., Baykov A. A., Lahti R., Hachimori A. Cloning and expression of a unique inorganic pyrophosphatase from Bacillus subtilis: evidence for a new family of enzymes. FEBS Lett. 1998 Nov 20;439(3):263–266. doi: 10.1016/s0014-5793(98)01381-7. [DOI] [PubMed] [Google Scholar]
  30. Sivula T., Salminen A., Parfenyev A. N., Pohjanjoki P., Goldman A., Cooperman B. S., Baykov A. A., Lahti R. Evolutionary aspects of inorganic pyrophosphatase. FEBS Lett. 1999 Jul 2;454(1-2):75–80. doi: 10.1016/s0014-5793(99)00779-6. [DOI] [PubMed] [Google Scholar]
  31. Smirnova I. N., Kasho V. N., Volk S. E., Ivanov A. H., Baykov A. A. Rates of elementary steps catalyzed by rat liver cytosolic and mitochondrial inorganic pyrophosphatases in both directions. Arch Biochem Biophys. 1995 Apr 20;318(2):340–348. doi: 10.1006/abbi.1995.1238. [DOI] [PubMed] [Google Scholar]
  32. Smirnova I. N., Kudryavtseva N. A., Komissarenko S. V., Tarusova N. B., Baykov A. A. Diphosphonates are potent inhibitors of mammalian inorganic pyrophosphatase. Arch Biochem Biophys. 1988 Nov 15;267(1):280–284. doi: 10.1016/0003-9861(88)90033-1. [DOI] [PubMed] [Google Scholar]
  33. Springs B., Welsh K. M., Cooperman B. S. Thermodynamics, kinetics, and mechanism in yeast inorganic pyrophosphatase catalysis of inorganic pyrophosphate: inorganic phosphate equilibration. Biochemistry. 1981 Oct 27;20(22):6384–6391. doi: 10.1021/bi00525a016. [DOI] [PubMed] [Google Scholar]
  34. Wong S. C., Hall D. C., Josse J. Constitutive inorganic pyrophosphatase of Escherichia coli. 3. Molecular weight and physical properties of the enzyme and its subunits. J Biol Chem. 1970 Sep 10;245(17):4335–4345. [PubMed] [Google Scholar]
  35. Young T. W., Kuhn N. J., Wadeson A., Ward S., Burges D., Cooke G. D. Bacillus subtilis ORF yybQ encodes a manganese-dependent inorganic pyrophosphatase with distinctive properties: the first of a new class of soluble pyrophosphatase? Microbiology. 1998 Sep;144(Pt 9):2563–2571. doi: 10.1099/00221287-144-9-2563. [DOI] [PubMed] [Google Scholar]
  36. Zyryanov A. B., Pohjanjoki P., Kasho V. N., Shestakov A. S., Goldman A., Lahti R., Baykov A. A. The electrophilic and leaving group phosphates in the catalytic mechanism of yeast pyrophosphatase. J Biol Chem. 2001 Feb 20;276(21):17629–17634. doi: 10.1074/jbc.M100343200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES