Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Nov 1;367(Pt 3):817–824. doi: 10.1042/BJ20020856

The size, shape and specificity of the sugar-binding site of the jacalin-related lectins is profoundly affected by the proteolytic cleavage of the subunits.

Corinne Houlès Astoul 1, Willy J Peumans 1, Els J M van Damme 1, Annick Barre 1, Yves Bourne 1, Pierre Rougé 1
PMCID: PMC1222947  PMID: 12169094

Abstract

Mannose-specific lectins with high sequence similarity to jacalin and the Maclura pomifera agglutinin have been isolated from species belonging to the families Moraceae, Convolvulaceae, Brassicaceae, Asteraceae, Poaceae and Musaceae. Although these novel mannose-specific lectins are undoubtedly related to the galactose-specific Moraceae lectins there are several important differences. Apart from the obvious differences in specificity, the mannose- and galactose-specific jacalin-related lectins differ in what concerns their biosynthesis and processing, intracellular location and degree of oligomerization of the protomers. Taking into consideration that the mannose-specific lectins are widely distributed in higher plants, whereas their galactose-specific counterparts are confined to a subgroup of the Moraceae sp. one can reasonably assume that the galactose-specific Moraceae lectins are a small-side group of the main family. The major change that took place in the structure of the binding site of the diverging Moraceae lectins concerns a proteolytic cleavage close to the N-terminus of the protomer. To corroborate the impact of this change, the specificity of jacalin was re-investigated using surface plasmon resonance analysis. This approach revealed that in addition to galactose and N -acetylgalactosamine, the carbohydrate-binding specificity of jacalin extends to mannose, glucose, N -acetylmuramic acid and N -acetylneuraminic acid. Owing to this broad carbohydrate-binding specificity, jacalin is capable of recognizing complex glycans from plant pathogens or predators.

Full Text

The Full Text of this article is available as a PDF (222.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen A. K., Neuberger A. A simple method for the preparation of an affinity absorbent for soybean agglutinin using galactosamine and CH-Sepharose. FEBS Lett. 1975 Feb 15;50(3):362–364. doi: 10.1016/0014-5793(75)80528-x. [DOI] [PubMed] [Google Scholar]
  2. Barre A., Van Damme E. J., Peumans W. J., Rougé P. Structure-function relationship of monocot mannose-binding lectins. Plant Physiol. 1996 Dec;112(4):1531–1540. doi: 10.1104/pp.112.4.1531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bausch J. N., Poretz R. D. Purification and properties of the hemagglutinin from Maclura pomifera seeds. Biochemistry. 1977 Dec 27;16(26):5790–5794. doi: 10.1021/bi00645a023. [DOI] [PubMed] [Google Scholar]
  4. Bourne Y., Mazurier J., Legrand D., Rougé P., Montreuil J., Spik G., Cambillau C. Structures of a legume lectin complexed with the human lactotransferrin N2 fragment, and with an isolated biantennary glycopeptide: role of the fucose moiety. Structure. 1994 Mar 15;2(3):209–219. doi: 10.1016/s0969-2126(00)00022-8. [DOI] [PubMed] [Google Scholar]
  5. Bourne Y., Zamboni V., Barre A., Peumans W. J., Van Damme E. J., Rougé P. Helianthus tuberosus lectin reveals a widespread scaffold for mannose-binding lectins. Structure. 1999 Dec 15;7(12):1473–1482. doi: 10.1016/s0969-2126(00)88338-0. [DOI] [PubMed] [Google Scholar]
  6. Bourne Yves, Astoul Corinne Houlès, Zamboni Véronique, Peumans Willy J., Menu-Bouaouiche Laurence, Van Damme Els J. M., Barre Annick, Rougé Pierre. Structural basis for the unusual carbohydrate-binding specificity of jacalin towards galactose and mannose. Biochem J. 2002 May 15;364(Pt 1):173–180. doi: 10.1042/bj3640173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Claes B., Dekeyser R., Villarroel R., Van den Bulcke M., Bauw G., Van Montagu M., Caplan A. Characterization of a rice gene showing organ-specific expression in response to salt stress and drought. Plant Cell. 1990 Jan;2(1):19–27. doi: 10.1105/tpc.2.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clendennen S. K., May G. D. Differential gene expression in ripening banana fruit. Plant Physiol. 1997 Oct;115(2):463–469. doi: 10.1104/pp.115.2.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cumming D. A., Hellerqvist C. G., Harris-Brandts M., Michnick S. W., Carver J. P., Bendiak B. Structures of asparagine-linked oligosaccharides of the glycoprotein fetuin having sialic acid linked to N-acetylglucosamine. Biochemistry. 1989 Jul 25;28(15):6500–6512. doi: 10.1021/bi00441a051. [DOI] [PubMed] [Google Scholar]
  10. Dessen A., Gupta D., Sabesan S., Brewer C. F., Sacchettini J. C. X-ray crystal structure of the soybean agglutinin cross-linked with a biantennary analog of the blood group I carbohydrate antigen. Biochemistry. 1995 Apr 18;34(15):4933–4942. doi: 10.1021/bi00015a004. [DOI] [PubMed] [Google Scholar]
  11. Dorland L., van Halbeek H., Vleigenthart J. F., Lis H., Sharon N. Primary structure of the carbohydrate chain of soybean agglutinin. A reinvestigation by high resolution 1H NMR spectroscopy. J Biol Chem. 1981 Aug 10;256(15):7708–7711. [PubMed] [Google Scholar]
  12. Edge A. S., Spiro R. G. Presence of an O-glycosidically linked hexasaccharide in fetuin. J Biol Chem. 1987 Nov 25;262(33):16135–16141. [PubMed] [Google Scholar]
  13. Esnouf R. M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J Mol Graph Model. 1997 Apr;15(2):132-4, 112-3. doi: 10.1016/S1093-3263(97)00021-1. [DOI] [PubMed] [Google Scholar]
  14. Fabre C., Causse H., Mourey L., Koninkx J., Rivière M., Hendriks H., Puzo G., Samama J. P., Rougé P. Characterization and sugar-binding properties of arcelin-1, an insecticidal lectin-like protein isolated from kidney bean (Phaseolus vulgaris L. cv. RAZ-2) seeds. Biochem J. 1998 Feb 1;329(Pt 3):551–560. doi: 10.1042/bj3290551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gaboriaud C., Bissery V., Benchetrit T., Mornon J. P. Hydrophobic cluster analysis: an efficient new way to compare and analyse amino acid sequences. FEBS Lett. 1987 Nov 16;224(1):149–155. doi: 10.1016/0014-5793(87)80439-8. [DOI] [PubMed] [Google Scholar]
  16. Geshi N., Brandt A. Two jasmonate-inducible myrosinase-binding proteins from Brassica napus L. seedlings with homology to jacalin. Planta. 1998 Mar;204(3):295–304. doi: 10.1007/s004250050259. [DOI] [PubMed] [Google Scholar]
  17. Hester G., Kaku H., Goldstein I. J., Wright C. S. Structure of mannose-specific snowdrop (Galanthus nivalis) lectin is representative of a new plant lectin family. Nat Struct Biol. 1995 Jun;2(6):472–479. doi: 10.1038/nsb0695-472. [DOI] [PubMed] [Google Scholar]
  18. Lee X., Thompson A., Zhang Z., Ton-that H., Biesterfeldt J., Ogata C., Xu L., Johnston R. A., Young N. M. Structure of the complex of Maclura pomifera agglutinin and the T-antigen disaccharide, Galbeta1,3GalNAc. J Biol Chem. 1998 Mar 13;273(11):6312–6318. doi: 10.1074/jbc.273.11.6312. [DOI] [PubMed] [Google Scholar]
  19. Lemesle-Varloot L., Henrissat B., Gaboriaud C., Bissery V., Morgat A., Mornon J. P. Hydrophobic cluster analysis: procedures to derive structural and functional information from 2-D-representation of protein sequences. Biochimie. 1990 Aug;72(8):555–574. doi: 10.1016/0300-9084(90)90120-6. [DOI] [PubMed] [Google Scholar]
  20. Loris R., Hamelryck T., Bouckaert J., Wyns L. Legume lectin structure. Biochim Biophys Acta. 1998 Mar 3;1383(1):9–36. doi: 10.1016/s0167-4838(97)00182-9. [DOI] [PubMed] [Google Scholar]
  21. Mann K., Farias C. M., Del Sol F. G., Santos C. F., Grangeiro T. B., Nagano C. S., Cavada B. S., Calvete J. J. The amino-acid sequence of the glucose/mannose-specific lectin isolated from Parkia platycephala seeds reveals three tandemly arranged jacalin-related domains. Eur J Biochem. 2001 Aug;268(16):4414–4422. doi: 10.1046/j.1432-1327.2001.02368.x. [DOI] [PubMed] [Google Scholar]
  22. Mas M. T., Smith K. C., Yarmush D. L., Aisaka K., Fine R. M. Modeling the anti-CEA antibody combining site by homology and conformational search. Proteins. 1992 Dec;14(4):483–498. doi: 10.1002/prot.340140409. [DOI] [PubMed] [Google Scholar]
  23. Mazaki-Tovi Michal, Baneth Gad, Aroch Itamar, Harrus Shimon, Kass Philip H., Ben-Ari Tomer, Zur Gila, Aizenberg Izhak, Bark Hylton, Lavy Eran. Canine spirocercosis: clinical, diagnostic, pathologic, and epidemiologic characteristics. Vet Parasitol. 2002 Aug 2;107(3):235–250. doi: 10.1016/s0304-4017(02)00118-8. [DOI] [PubMed] [Google Scholar]
  24. Montreuil J. Spatial conformation of glycans and glycoproteins. Biol Cell. 1984;51(2):115–131. doi: 10.1111/j.1768-322x.1984.tb00291.x. [DOI] [PubMed] [Google Scholar]
  25. Mourey L., Pédelacq J. D., Birck C., Fabre C., Rougé P., Samama J. P. Crystal structure of the arcelin-1 dimer from Phaseolus vulgaris at 1.9-A resolution. J Biol Chem. 1998 May 22;273(21):12914–12922. doi: 10.1074/jbc.273.21.12914. [DOI] [PubMed] [Google Scholar]
  26. Naismith J. H., Field R. A. Structural basis of trimannoside recognition by concanavalin A. J Biol Chem. 1996 Jan 12;271(2):972–976. doi: 10.1074/jbc.271.2.972. [DOI] [PubMed] [Google Scholar]
  27. Nomura K., Nakamura S., Fujitake M., Nakanishi T. Complete amino acid sequence of Japanese chestnut agglutinin. Biochem Biophys Res Commun. 2000 Sep 16;276(1):23–28. doi: 10.1006/bbrc.2000.3420. [DOI] [PubMed] [Google Scholar]
  28. Peumans W. J., Hause B., Van Damme E. J. The galactose-binding and mannose-binding jacalin-related lectins are located in different sub-cellular compartments. FEBS Lett. 2000 Jul 21;477(3):186–192. doi: 10.1016/s0014-5793(00)01801-9. [DOI] [PubMed] [Google Scholar]
  29. Peumans W. J., Winter H. C., Bemer V., Van Leuven F., Goldstein I. J., Truffa-Bachi P., Van Damme E. J. Isolation of a novel plant lectin with an unusual specificity from Calystegia sepium. Glycoconj J. 1997 Feb;14(2):259–265. doi: 10.1023/a:1018502107707. [DOI] [PubMed] [Google Scholar]
  30. Peumans W. J., Zhang W., Barre A., Houlès Astoul C., Balint-Kurti P. J., Rovira P., Rougé P., May G. D., Van Leuven F., Truffa-Bachi P. Fruit-specific lectins from banana and plantain. Planta. 2000 Sep;211(4):546–554. doi: 10.1007/s004250000307. [DOI] [PubMed] [Google Scholar]
  31. Ponder J. W., Richards F. M. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol. 1987 Feb 20;193(4):775–791. doi: 10.1016/0022-2836(87)90358-5. [DOI] [PubMed] [Google Scholar]
  32. Pratap J. V., Jeyaprakash A. Arockia, Rani P. Geetha, Sekar K., Surolia A., Vijayan M. Crystal structures of artocarpin, a Moraceae lectin with mannose specificity, and its complex with methyl-alpha-D-mannose: implications to the generation of carbohydrate specificity. J Mol Biol. 2002 Mar 22;317(2):237–247. doi: 10.1006/jmbi.2001.5432. [DOI] [PubMed] [Google Scholar]
  33. Rinderle S. J., Goldstein I. J., Matta K. L., Ratcliffe R. M. Isolation and characterization of amaranthin, a lectin present in the seeds of Amaranthus caudatus, that recognizes the T- (or cryptic T)-antigen. J Biol Chem. 1989 Sep 25;264(27):16123–16131. [PubMed] [Google Scholar]
  34. Rini J. M. Lectin structure. Annu Rev Biophys Biomol Struct. 1995;24:551–577. doi: 10.1146/annurev.bb.24.060195.003003. [DOI] [PubMed] [Google Scholar]
  35. Rosa J. C., De Oliveira P. S., Garratt R., Beltramini L., Resing K., Roque-Barreira M. C., Greene L. J. KM+, a mannose-binding lectin from Artocarpus integrifolia: amino acid sequence, predicted tertiary structure, carbohydrate recognition, and analysis of the beta-prism fold. Protein Sci. 1999 Jan;8(1):13–24. doi: 10.1110/ps.8.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sankaranarayanan R., Sekar K., Banerjee R., Sharma V., Surolia A., Vijayan M. A novel mode of carbohydrate recognition in jacalin, a Moraceae plant lectin with a beta-prism fold. Nat Struct Biol. 1996 Jul;3(7):596–603. doi: 10.1038/nsb0796-596. [DOI] [PubMed] [Google Scholar]
  37. Sarkar M., Wu A. M., Kabat E. A. Immunochemical studies on the carbohydrate specificity of Maclura pomifera lectin. Arch Biochem Biophys. 1981 Jun;209(1):204–218. doi: 10.1016/0003-9861(81)90273-3. [DOI] [PubMed] [Google Scholar]
  38. Sastry M. V., Banarjee P., Patanjali S. R., Swamy M. J., Swarnalatha G. V., Surolia A. Analysis of saccharide binding to Artocarpus integrifolia lectin reveals specific recognition of T-antigen (beta-D-Gal(1----3)D-GalNAc). J Biol Chem. 1986 Sep 5;261(25):11726–11733. [PubMed] [Google Scholar]
  39. Sharma V., Surolia A. Analyses of carbohydrate recognition by legume lectins: size of the combining site loops and their primary specificity. J Mol Biol. 1997 Mar 28;267(2):433–445. doi: 10.1006/jmbi.1996.0863. [DOI] [PubMed] [Google Scholar]
  40. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec 15;25(24):4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Transue T. R., Smith A. K., Mo H., Goldstein I. J., Saper M. A. Structure of benzyl T-antigen disaccharide bound to Amaranthus caudatus agglutinin. Nat Struct Biol. 1997 Oct;4(10):779–783. doi: 10.1038/nsb1097-779. [DOI] [PubMed] [Google Scholar]
  42. Van Damme E. J., Barre A., Mazard A. M., Verhaert P., Horman A., Debray H., Rouge P., Peumans W. J. Characterization and molecular cloning of the lectin from Helianthus tuberosus. Eur J Biochem. 1999 Jan;259(1-2):135–142. doi: 10.1046/j.1432-1327.1999.00013.x. [DOI] [PubMed] [Google Scholar]
  43. Van Damme E. J., Barre A., Rougé P., Van Leuven F., Peumans W. J. The NeuAc(alpha-2,6)-Gal/GalNAc-binding lectin from elderberry (Sambucus nigra) bark, a type-2 ribosome-inactivating protein with an unusual specificity and structure. Eur J Biochem. 1996 Jan 15;235(1-2):128–137. doi: 10.1111/j.1432-1033.1996.00128.x. [DOI] [PubMed] [Google Scholar]
  44. Van Damme E. J., Barre A., Verhaert P., Rougé P., Peumans W. J. Molecular cloning of the mitogenic mannose/maltose-specific rhizome lectin from Calystegia sepium. FEBS Lett. 1996 Nov 18;397(2-3):352–356. doi: 10.1016/s0014-5793(96)01211-2. [DOI] [PubMed] [Google Scholar]
  45. Van Damme E. J., Roy S., Barre A., Citores L., Mostafapous K., Rougé P., Van Leuven F., Girbés T., Goldstein I. J., Peumans W. J. Elderberry (Sambucus nigra) bark contains two structurally different Neu5Ac(alpha2,6)Gal/GalNAc-binding type 2 ribosome-inactivating proteins. Eur J Biochem. 1997 May 1;245(3):648–655. doi: 10.1111/j.1432-1033.1997.00648.x. [DOI] [PubMed] [Google Scholar]
  46. Yang H., Czapla T. H. Isolation and characterization of cDNA clones encoding jacalin isolectins. J Biol Chem. 1993 Mar 15;268(8):5905–5910. [PubMed] [Google Scholar]
  47. Young N. M., Oomen R. P. Analysis of sequence variation among legume lectins. A ring of hypervariable residues forms the perimeter of the carbohydrate-binding site. J Mol Biol. 1992 Dec 5;228(3):924–934. doi: 10.1016/0022-2836(92)90875-k. [DOI] [PubMed] [Google Scholar]
  48. Zhang W., Peumans W. J., Barre A., Astoul C. H., Rovira P., Rougé P., Proost P., Truffa-Bachi P., Jalali A. A., Van Damme E. J. Isolation and characterization of a jacalin-related mannose-binding lectin from salt-stressed rice (Oryza sativa) plants. Planta. 2000 May;210(6):970–978. doi: 10.1007/s004250050705. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES