Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Nov 15;368(Pt 1):91–100. doi: 10.1042/BJ20020806

Temporin L: antimicrobial, haemolytic and cytotoxic activities, and effects on membrane permeabilization in lipid vesicles.

Andrea C Rinaldi 1, Maria Luisa Mangoni 1, Anna Rufo 1, Carla Luzi 1, Donatella Barra 1, Hongxia Zhao 1, Paavo K J Kinnunen 1, Argante Bozzi 1, Antonio Di Giulio 1, Maurizio Simmaco 1
PMCID: PMC1222958  PMID: 12133008

Abstract

The temporins are a family of small, linear antibiotic peptides with intriguing biological properties. We investigated the antibacterial, haemolytic and cytotoxic activities of temporin L (FVQWFSKFLGRIL-NH2), isolated from the skin of the European red frog Rana temporaria. The peptide displayed the highest activity of temporins studied to date, against both human erythrocytes and bacterial and fungal strains. At variance with other known temporins, which are mainly active against Gram-positive bacteria, temporin L was also active against Gram-negative strains such as Pseudomonas aeruginosa A.T.C.C. 15692 and Escherichia coli D21 at concentrations comparable with those that are microbiocidal to Gram-positive bacteria. In addition, temporin L was cytotoxic to three different human tumour cell lines (Hut-78, K-562 and U-937), causing a necrosis-like cell death, although sensitivity to the peptide varied markedly with the specific cell line tested. A study of the interaction of temporin L with liposomes of different lipid compositions revealed that the peptide causes perturbation of bilayer integrity of both neutral and negatively charged membranes, as revealed by the release of a vesicle-encapsulated fluorescent marker, and that the action of the peptide is modulated to some extent by membrane lipid composition. In particular, the presence of negatively charged lipids in the model bilayer inhibits the lytic power of temporin L. We also show that the release of fluorescent markers caused by temporin L is size-dependent and that the peptide does not have a detergent-like effect on the membrane, suggesting that perturbation of bilayer organization takes place on a local scale, i.e. through the formation of pore-like openings.

Full Text

The Full Text of this article is available as a PDF (281.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benachir T., Lafleur M. Study of vesicle leakage induced by melittin. Biochim Biophys Acta. 1995 May 4;1235(2):452–460. doi: 10.1016/0005-2736(95)80035-e. [DOI] [PubMed] [Google Scholar]
  2. Boman H. G. Peptide antibiotics and their role in innate immunity. Annu Rev Immunol. 1995;13:61–92. doi: 10.1146/annurev.iy.13.040195.000425. [DOI] [PubMed] [Google Scholar]
  3. Chabot M. C., Wykle R. L., Modest E. J., Daniel L. W. Correlation of ether lipid content of human leukemia cell lines and their susceptibility to 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine. Cancer Res. 1989 Aug 15;49(16):4441–4445. [PubMed] [Google Scholar]
  4. Dathe M., Schümann M., Wieprecht T., Winkler A., Beyermann M., Krause E., Matsuzaki K., Murase O., Bienert M. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Biochemistry. 1996 Sep 24;35(38):12612–12622. doi: 10.1021/bi960835f. [DOI] [PubMed] [Google Scholar]
  5. Dathe M., Wieprecht T., Nikolenko H., Handel L., Maloy W. L., MacDonald D. L., Beyermann M., Bienert M. Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and haemolytic activity of amphipathic helical peptides. FEBS Lett. 1997 Feb 17;403(2):208–212. doi: 10.1016/s0014-5793(97)00055-0. [DOI] [PubMed] [Google Scholar]
  6. Dempsey C. E. The actions of melittin on membranes. Biochim Biophys Acta. 1990 May 7;1031(2):143–161. doi: 10.1016/0304-4157(90)90006-x. [DOI] [PubMed] [Google Scholar]
  7. Diomede L., Piovani B., Modest E. J., Noseda A., Salmona M. Increased ether lipid cytotoxicity by reducing membrane cholesterol content. Int J Cancer. 1991 Sep 30;49(3):409–413. doi: 10.1002/ijc.2910490317. [DOI] [PubMed] [Google Scholar]
  8. Eisenberg D. Three-dimensional structure of membrane and surface proteins. Annu Rev Biochem. 1984;53:595–623. doi: 10.1146/annurev.bi.53.070184.003115. [DOI] [PubMed] [Google Scholar]
  9. Ganz T., Lehrer R. I. Antimicrobial peptides of vertebrates. Curr Opin Immunol. 1998 Feb;10(1):41–44. doi: 10.1016/s0952-7915(98)80029-0. [DOI] [PubMed] [Google Scholar]
  10. Garcerá M. J., Elferink M. G., Driessen A. J., Konings W. N. In vitro pore-forming activity of the lantibiotic nisin. Role of protonmotive force and lipid composition. Eur J Biochem. 1993 Mar 1;212(2):417–422. doi: 10.1111/j.1432-1033.1993.tb17677.x. [DOI] [PubMed] [Google Scholar]
  11. García-Olmedo F., Molina A., Alamillo J. M., Rodríguez-Palenzuéla P. Plant defense peptides. Biopolymers. 1998;47(6):479–491. doi: 10.1002/(SICI)1097-0282(1998)47:6<479::AID-BIP6>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  12. Gennaro Renato, Zanetti Margherita, Benincasa Monica, Podda Elena, Miani Monica. Pro-rich antimicrobial peptides from animals: structure, biological functions and mechanism of action. Curr Pharm Des. 2002;8(9):763–778. doi: 10.2174/1381612023395394. [DOI] [PubMed] [Google Scholar]
  13. Gibson B. W., Tang D. Z., Mandrell R., Kelly M., Spindel E. R. Bombinin-like peptides with antimicrobial activity from skin secretions of the Asian toad, Bombina orientalis. J Biol Chem. 1991 Dec 5;266(34):23103–23111. [PubMed] [Google Scholar]
  14. Harjunpä I., Kuusela P., Smoluch M. T., Silberring J., Lankinen H., Wade D. Comparison of synthesis and antibacterial activity of temporin A. FEBS Lett. 1999 Apr 23;449(2-3):187–190. doi: 10.1016/s0014-5793(99)00406-8. [DOI] [PubMed] [Google Scholar]
  15. Hujakka H., Ratilainen J., Korjamo T., Lankinen H., Kuusela P., Santa H., Laatikainen R., Närvänen A. Synthesis and antimicrobial activity of the symmetric dimeric form of Temporin A based on 3-N,N-di(3-aminopropyl)amino propanoic acid as the branching unit. Bioorg Med Chem. 2001 Jun;9(6):1601–1607. doi: 10.1016/s0968-0896(01)00047-5. [DOI] [PubMed] [Google Scholar]
  16. Hultmark D., Engström A., Bennich H., Kapur R., Boman H. G. Insect immunity: isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae. Eur J Biochem. 1982 Sep;127(1):207–217. doi: 10.1111/j.1432-1033.1982.tb06857.x. [DOI] [PubMed] [Google Scholar]
  17. Kim J. B., Halverson T., Basir Y. J., Dulka J., Knoop F. C., Abel P. W., Conlon J. M. Purification and characterization of antimicrobial and vasorelaxant peptides from skin extracts and skin secretions of the North American pig frog Rana grylio. Regul Pept. 2000 Jun 30;90(1-3):53–60. doi: 10.1016/s0167-0115(00)00107-5. [DOI] [PubMed] [Google Scholar]
  18. Kroemer G., Dallaporta B., Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol. 1998;60:619–642. doi: 10.1146/annurev.physiol.60.1.619. [DOI] [PubMed] [Google Scholar]
  19. Ladokhin A. S., Selsted M. E., White S. H. Sizing membrane pores in lipid vesicles by leakage of co-encapsulated markers: pore formation by melittin. Biophys J. 1997 Apr;72(4):1762–1766. doi: 10.1016/S0006-3495(97)78822-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lai Ren, Zheng Yong Tang, Shen Ji Hong, Liu Guan Jie, Liu Hen, Lee Wen Hui, Tang Shao Zhong, Zhang Yun. Antimicrobial peptides from skin secretions of Chinese red belly toad Bombina maxima. Peptides. 2002 Mar;23(3):427–435. doi: 10.1016/s0196-9781(01)00641-6. [DOI] [PubMed] [Google Scholar]
  21. Lehrer R. I., Lichtenstein A. K., Ganz T. Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol. 1993;11:105–128. doi: 10.1146/annurev.iy.11.040193.000541. [DOI] [PubMed] [Google Scholar]
  22. Mangoni M. L., Grovale N., Giorgi A., Mignogna G., Simmaco M., Barra D. Structure-function relationships in bombinins H, antimicrobial peptides from Bombina skin secretions. Peptides. 2000 Nov;21(11):1673–1679. doi: 10.1016/s0196-9781(00)00316-8. [DOI] [PubMed] [Google Scholar]
  23. Mangoni M. L., Miele R., Renda T. G., Barra D., Simmaco M. The synthesis of antimicrobial peptides in the skin of Rana esculenta is stimulated by microorganisms. FASEB J. 2001 Jun;15(8):1431–1432. doi: 10.1096/fj.00-0695fje. [DOI] [PubMed] [Google Scholar]
  24. Mangoni M. L., Rinaldi A. C., Di Giulio A., Mignogna G., Bozzi A., Barra D., Simmaco M. Structure-function relationships of temporins, small antimicrobial peptides from amphibian skin. Eur J Biochem. 2000 Mar;267(5):1447–1454. doi: 10.1046/j.1432-1327.2000.01143.x. [DOI] [PubMed] [Google Scholar]
  25. Matsuzaki K., Sugishita K., Miyajima K. Interactions of an antimicrobial peptide, magainin 2, with lipopolysaccharide-containing liposomes as a model for outer membranes of gram-negative bacteria. FEBS Lett. 1999 Apr 23;449(2-3):221–224. doi: 10.1016/s0014-5793(99)00443-3. [DOI] [PubMed] [Google Scholar]
  26. McGahon A. J., Martin S. J., Bissonnette R. P., Mahboubi A., Shi Y., Mogil R. J., Nishioka W. K., Green D. R. The end of the (cell) line: methods for the study of apoptosis in vitro. Methods Cell Biol. 1995;46:153–185. doi: 10.1016/s0091-679x(08)61929-9. [DOI] [PubMed] [Google Scholar]
  27. Ohsaki Y., Gazdar A. F., Chen H. C., Johnson B. E. Antitumor activity of magainin analogues against human lung cancer cell lines. Cancer Res. 1992 Jul 1;52(13):3534–3538. [PubMed] [Google Scholar]
  28. Otvos L., Jr Antibacterial peptides isolated from insects. J Pept Sci. 2000 Oct;6(10):497–511. doi: 10.1002/1099-1387(200010)6:10<497::AID-PSC277>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
  29. Park N. G., Yamato Y., Lee S., Sugihara G. Interaction of mastoparan-B from venom of a hornet in Taiwan with phospholipid bilayers and its antimicrobial activity. Biopolymers. 1995 Dec;36(6):793–801. doi: 10.1002/bip.360360611. [DOI] [PubMed] [Google Scholar]
  30. Ponti D., Mignogna G., Mangoni M. L., De Biase D., Simmaco M., Barra D. Expression and activity of cyclic and linear analogues of esculentin-1, an anti-microbial peptide from amphibian skin. Eur J Biochem. 1999 Aug;263(3):921–927. doi: 10.1046/j.1432-1327.1999.00597.x. [DOI] [PubMed] [Google Scholar]
  31. Prehm P., Stirm S., Jann B., Jann K., Boman H. G. Cell-wall lipopolysaccharides of ampicillin-resistant mutants of Escherichia coli K-12. Eur J Biochem. 1976 Jul 1;66(2):369–377. doi: 10.1111/j.1432-1033.1976.tb10526.x. [DOI] [PubMed] [Google Scholar]
  32. Rinaldi A. C., Di Giulio A., Liberi M., Gualtieri G., Oratore A., Bozzi A., Schininà M. E., Simmaco M. Effects of temporins on molecular dynamics and membrane permeabilization in lipid vesicles. J Pept Res. 2001 Sep;58(3):213–220. doi: 10.1034/j.1399-3011.2001.00896.x. [DOI] [PubMed] [Google Scholar]
  33. Risso A., Zanetti M., Gennaro R. Cytotoxicity and apoptosis mediated by two peptides of innate immunity. Cell Immunol. 1998 Nov 1;189(2):107–115. doi: 10.1006/cimm.1998.1358. [DOI] [PubMed] [Google Scholar]
  34. Risso Angela, Braidot Enrico, Sordano Maria Concetta, Vianello Angelo, Macrì Francesco, Skerlavaj Barbara, Zanetti Margherita, Gennaro Renato, Bernardi Paolo. BMAP-28, an antibiotic peptide of innate immunity, induces cell death through opening of the mitochondrial permeability transition pore. Mol Cell Biol. 2002 Mar;22(6):1926–1935. doi: 10.1128/MCB.22.6.1926-1935.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Scherrer R., Gerhardt P. Molecular sieving by the Bacillus megaterium cell wall and protoplast. J Bacteriol. 1971 Sep;107(3):718–735. doi: 10.1128/jb.107.3.718-735.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Scott M. G., Yan H., Hancock R. E. Biological properties of structurally related alpha-helical cationic antimicrobial peptides. Infect Immun. 1999 Apr;67(4):2005–2009. doi: 10.1128/iai.67.4.2005-2009.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Simmaco M., Barra D., Chiarini F., Noviello L., Melchiorri P., Kreil G., Richter K. A family of bombinin-related peptides from the skin of Bombina variegata. Eur J Biochem. 1991 Jul 1;199(1):217–222. doi: 10.1111/j.1432-1033.1991.tb16112.x. [DOI] [PubMed] [Google Scholar]
  38. Simmaco M., Mignogna G., Barra D. Antimicrobial peptides from amphibian skin: what do they tell us? Biopolymers. 1998;47(6):435–450. doi: 10.1002/(SICI)1097-0282(1998)47:6<435::AID-BIP3>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  39. Simmaco M., Mignogna G., Canofeni S., Miele R., Mangoni M. L., Barra D. Temporins, antimicrobial peptides from the European red frog Rana temporaria. Eur J Biochem. 1996 Dec 15;242(3):788–792. doi: 10.1111/j.1432-1033.1996.0788r.x. [DOI] [PubMed] [Google Scholar]
  40. Subbalakshmi C., Krishnakumari V., Nagaraj R., Sitaram N. Requirements for antibacterial and hemolytic activities in the bovine neutrophil derived 13-residue peptide indolicidin. FEBS Lett. 1996 Oct 14;395(1):48–52. doi: 10.1016/0014-5793(96)00996-9. [DOI] [PubMed] [Google Scholar]
  41. Taylor S. W., Craig A. G., Fischer W. H., Park M., Lehrer R. I. Styelin D, an extensively modified antimicrobial peptide from ascidian hemocytes. J Biol Chem. 2000 Dec 8;275(49):38417–38426. doi: 10.1074/jbc.M006762200. [DOI] [PubMed] [Google Scholar]
  42. Valenti P., Visca P., Antonini G., Orsi N. Antifungal activity of ovotransferrin towards genus Candida. Mycopathologia. 1985 Mar;89(3):169–175. doi: 10.1007/BF00447027. [DOI] [PubMed] [Google Scholar]
  43. Vande Velde C., Cizeau J., Dubik D., Alimonti J., Brown T., Israels S., Hakem R., Greenberg A. H. BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol. 2000 Aug;20(15):5454–5468. doi: 10.1128/mcb.20.15.5454-5468.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Williams R. W., Starman R., Taylor K. M., Gable K., Beeler T., Zasloff M., Covell D. Raman spectroscopy of synthetic antimicrobial frog peptides magainin 2a and PGLa. Biochemistry. 1990 May 8;29(18):4490–4496. doi: 10.1021/bi00470a031. [DOI] [PubMed] [Google Scholar]
  45. Yang L., Harroun T. A., Weiss T. M., Ding L., Huang H. W. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J. 2001 Sep;81(3):1475–1485. doi: 10.1016/S0006-3495(01)75802-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5449–5453. doi: 10.1073/pnas.84.15.5449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Zasloff Michael. Antimicrobial peptides of multicellular organisms. Nature. 2002 Jan 24;415(6870):389–395. doi: 10.1038/415389a. [DOI] [PubMed] [Google Scholar]
  48. Zhao Hongxia, Rinaldi Andrea C., Di Giulio Antonio, Simmaco Maurizio, Kinnunen Paavo K. J. Interactions of the antimicrobial peptides temporins with model biomembranes. Comparison of temporins B and L. Biochemistry. 2002 Apr 2;41(13):4425–4436. doi: 10.1021/bi011929e. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES