Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Nov 15;368(Pt 1):49–56. doi: 10.1042/BJ20020137

The type 2 vascular endothelial growth factor receptor recruits insulin receptor substrate-1 in its signalling pathway.

Duraisamy Senthil 1, Goutam Ghosh Choudhury 1, Basant K Bhandari 1, Balakuntalam S Kasinath 1
PMCID: PMC1222964  PMID: 12153400

Abstract

Vascular endothelial growth factor (VEGF) isoforms exert their biological effects through receptors that possess intrinsic tyrosine kinase activity. Whether VEGF binding to its receptors recruits insulin receptor substrate (IRS) family of docking proteins to the receptor is not known. Following incubation of mouse kidney proximal tubular epithelial cells with VEGF, we observed an increase in tyrosine phosphorylation of several proteins, including one of approximately 200 kDa, suggesting possible regulation of phosphorylation of IRS proteins. VEGF augmented tyrosine phosphorylation of IRS-1 in kidney epithelial cells and rat heart endothelial cells in a time-dependent manner. In the epithelial cells, association of IRS-1 with type 2 VEGF receptor was promoted by VEGF. VEGF also increased association of IRS-1 with the p85 regulatory subunit of phosphoinositide 3-kinase (PI 3-kinase), and PI 3-kinase activity in IRS-1 immunoprecipitates was increased in VEGF-treated cells. Incubation of epithelial cells with antisense IRS-1 oligonucleotide, but not sense oligonucleotide, reduced expression of the protein and VEGF-induced PI 3-kinase activity in IRS-1 immunoprecipitates. Additionally, VEGF-induced protein synthesis was also impaired by antisense but not sense IRS-1 oligonucleotide. These data provide the first evidence that binding of VEGF to its type 2 receptor promotes association of IRS-1 with the receptor complex. This association may account for some of the increase in VEGF-induced PI 3-kinase activity, and the increase in de novo protein synthesis seen in renal epithelial cells.

Full Text

The Full Text of this article is available as a PDF (344.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhandari B. K., Feliers D., Duraisamy S., Stewart J. L., Gingras A. C., Abboud H. E., Choudhury G. G., Sonenberg N., Kasinath B. S. Insulin regulation of protein translation repressor 4E-BP1, an eIF4E-binding protein, in renal epithelial cells. Kidney Int. 2001 Mar;59(3):866–875. doi: 10.1046/j.1523-1755.2001.059003866.x. [DOI] [PubMed] [Google Scholar]
  2. Connolly D. T., Olander J. V., Heuvelman D., Nelson R., Monsell R., Siegel N., Haymore B. L., Leimgruber R., Feder J. Human vascular permeability factor. Isolation from U937 cells. J Biol Chem. 1989 Nov 25;264(33):20017–20024. [PubMed] [Google Scholar]
  3. Cross M. J., Claesson-Welsh L. FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci. 2001 Apr;22(4):201–207. doi: 10.1016/s0165-6147(00)01676-x. [DOI] [PubMed] [Google Scholar]
  4. Cunningham S. A., Waxham M. N., Arrate P. M., Brock T. A. Interaction of the Flt-1 tyrosine kinase receptor with the p85 subunit of phosphatidylinositol 3-kinase. Mapping of a novel site involved in binding. J Biol Chem. 1995 Sep 1;270(35):20254–20257. doi: 10.1074/jbc.270.35.20254. [DOI] [PubMed] [Google Scholar]
  5. Dayanir V., Meyer R. D., Lashkari K., Rahimi N. Identification of tyrosine residues in vascular endothelial growth factor receptor-2/FLK-1 involved in activation of phosphatidylinositol 3-kinase and cell proliferation. J Biol Chem. 2001 Mar 8;276(21):17686–17692. doi: 10.1074/jbc.M009128200. [DOI] [PubMed] [Google Scholar]
  6. Dimmeler S., Dernbach E., Zeiher A. M. Phosphorylation of the endothelial nitric oxide synthase at ser-1177 is required for VEGF-induced endothelial cell migration. FEBS Lett. 2000 Jul 21;477(3):258–262. doi: 10.1016/s0014-5793(00)01657-4. [DOI] [PubMed] [Google Scholar]
  7. Dougher-Vermazen M., Hulmes J. D., Böhlen P., Terman B. I. Biological activity and phosphorylation sites of the bacterially expressed cytosolic domain of the KDR VEGF-receptor. Biochem Biophys Res Commun. 1994 Nov 30;205(1):728–738. doi: 10.1006/bbrc.1994.2726. [DOI] [PubMed] [Google Scholar]
  8. Feliers D., Duraisamy S., Faulkner J. L., Duch J., Lee A. V., Abboud H. E., Choudhury G. G., Kasinath B. S. Activation of renal signaling pathways in db/db mice with type 2 diabetes. Kidney Int. 2001 Aug;60(2):495–504. doi: 10.1046/j.1523-1755.2001.060002495.x. [DOI] [PubMed] [Google Scholar]
  9. Fulton D., Gratton J. P., McCabe T. J., Fontana J., Fujio Y., Walsh K., Franke T. F., Papapetropoulos A., Sessa W. C. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature. 1999 Jun 10;399(6736):597–601. doi: 10.1038/21218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gerber H. P., McMurtrey A., Kowalski J., Yan M., Keyt B. A., Dixit V., Ferrara N. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem. 1998 Nov 13;273(46):30336–30343. doi: 10.1074/jbc.273.46.30336. [DOI] [PubMed] [Google Scholar]
  11. Guo D., Jia Q., Song H. Y., Warren R. S., Donner D. B. Vascular endothelial cell growth factor promotes tyrosine phosphorylation of mediators of signal transduction that contain SH2 domains. Association with endothelial cell proliferation. J Biol Chem. 1995 Mar 24;270(12):6729–6733. doi: 10.1074/jbc.270.12.6729. [DOI] [PubMed] [Google Scholar]
  12. Haverty T. P., Kelly C. J., Hines W. H., Amenta P. S., Watanabe M., Harper R. A., Kefalides N. A., Neilson E. G. Characterization of a renal tubular epithelial cell line which secretes the autologous target antigen of autoimmune experimental interstitial nephritis. J Cell Biol. 1988 Oct;107(4):1359–1368. doi: 10.1083/jcb.107.4.1359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. He W., Craparo A., Zhu Y., O'Neill T. J., Wang L. M., Pierce J. H., Gustafson T. A. Interaction of insulin receptor substrate-2 (IRS-2) with the insulin and insulin-like growth factor I receptors. Evidence for two distinct phosphotyrosine-dependent interaction domains within IRS-2. J Biol Chem. 1996 May 17;271(20):11641–11645. doi: 10.1074/jbc.271.20.11641. [DOI] [PubMed] [Google Scholar]
  14. Jiang B. H., Zheng J. Z., Aoki M., Vogt P. K. Phosphatidylinositol 3-kinase signaling mediates angiogenesis and expression of vascular endothelial growth factor in endothelial cells. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1749–1753. doi: 10.1073/pnas.040560897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kanno S., Oda N., Abe M., Terai Y., Ito M., Shitara K., Tabayashi K., Shibuya M., Sato Y. Roles of two VEGF receptors, Flt-1 and KDR, in the signal transduction of VEGF effects in human vascular endothelial cells. Oncogene. 2000 Apr 20;19(17):2138–2146. doi: 10.1038/sj.onc.1203533. [DOI] [PubMed] [Google Scholar]
  16. Keegan A. D., Nelms K., White M., Wang L. M., Pierce J. H., Paul W. E. An IL-4 receptor region containing an insulin receptor motif is important for IL-4-mediated IRS-1 phosphorylation and cell growth. Cell. 1994 Mar 11;76(5):811–820. doi: 10.1016/0092-8674(94)90356-5. [DOI] [PubMed] [Google Scholar]
  17. Kroll J., Waltenberger J. The vascular endothelial growth factor receptor KDR activates multiple signal transduction pathways in porcine aortic endothelial cells. J Biol Chem. 1997 Dec 19;272(51):32521–32527. doi: 10.1074/jbc.272.51.32521. [DOI] [PubMed] [Google Scholar]
  18. Matthews W., Jordan C. T., Gavin M., Jenkins N. A., Copeland N. G., Lemischka I. R. A receptor tyrosine kinase cDNA isolated from a population of enriched primitive hematopoietic cells and exhibiting close genetic linkage to c-kit. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9026–9030. doi: 10.1073/pnas.88.20.9026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Millauer B., Wizigmann-Voos S., Schnürch H., Martinez R., Møller N. P., Risau W., Ullrich A. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell. 1993 Mar 26;72(6):835–846. doi: 10.1016/0092-8674(93)90573-9. [DOI] [PubMed] [Google Scholar]
  20. Mèndez R., Myers M. G., Jr, White M. F., Rhoads R. E. Stimulation of protein synthesis, eukaryotic translation initiation factor 4E phosphorylation, and PHAS-I phosphorylation by insulin requires insulin receptor substrate 1 and phosphatidylinositol 3-kinase. Mol Cell Biol. 1996 Jun;16(6):2857–2864. doi: 10.1128/mcb.16.6.2857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sawka-Verhelle D., Tartare-Deckert S., White M. F., Van Obberghen E. Insulin receptor substrate-2 binds to the insulin receptor through its phosphotyrosine-binding domain and through a newly identified domain comprising amino acids 591-786. J Biol Chem. 1996 Mar 15;271(11):5980–5983. doi: 10.1074/jbc.271.11.5980. [DOI] [PubMed] [Google Scholar]
  22. Senthil D., Faulkner J. L., Choudhury G. G., Abboud H. E., Kasinath B. S. Angiotensin II inhibits insulin-stimulated phosphorylation of eukaryotic initiation factor 4E-binding protein-1 in proximal tubular epithelial cells. Biochem J. 2001 Nov 15;360(Pt 1):87–95. doi: 10.1042/0264-6021:3600087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Takahashi T., Shibuya M. The 230 kDa mature form of KDR/Flk-1 (VEGF receptor-2) activates the PLC-gamma pathway and partially induces mitotic signals in NIH3T3 fibroblasts. Oncogene. 1997 May 1;14(17):2079–2089. doi: 10.1038/sj.onc.1201047. [DOI] [PubMed] [Google Scholar]
  24. Wallace W. C., Akar C. A., Lyons W. E., Kole H. K., Egan J. M., Wolozin B. Amyloid precursor protein requires the insulin signaling pathway for neurotrophic activity. Brain Res Mol Brain Res. 1997 Dec 15;52(2):213–227. doi: 10.1016/s0169-328x(97)00259-3. [DOI] [PubMed] [Google Scholar]
  25. White M. F., Yenush L. The IRS-signaling system: a network of docking proteins that mediate insulin and cytokine action. Curr Top Microbiol Immunol. 1998;228:179–208. doi: 10.1007/978-3-642-80481-6_8. [DOI] [PubMed] [Google Scholar]
  26. Wu L. W., Mayo L. D., Dunbar J. D., Kessler K. M., Baerwald M. R., Jaffe E. A., Wang D., Warren R. S., Donner D. B. Utilization of distinct signaling pathways by receptors for vascular endothelial cell growth factor and other mitogens in the induction of endothelial cell proliferation. J Biol Chem. 2000 Feb 18;275(7):5096–5103. doi: 10.1074/jbc.275.7.5096. [DOI] [PubMed] [Google Scholar]
  27. Zachary I., Gliki G. Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res. 2001 Feb 16;49(3):568–581. doi: 10.1016/s0008-6363(00)00268-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES