Abstract
The tSNARE (the target-membrane soluble NSF-attachment protein receptor, where NSF is N -ethylmaleimide-sensitive fusion protein) synaptosomal-associated protein of 25 kDa (SNAP-25) is implicated in regulated insulin secretion. In pheochromocytoma PC12 cells, SNAP-25 is phosphorylated at Ser(187), which lies in a region that is important for its function. The aims of the present study were to determine whether SNAP-25 is phosphorylated at Ser(187) in insulin-secreting cells and, if so, whether this is important for regulated insulin secretion. The major findings are: (i) SNAP-25 is rapidly and reversibly phosphorylated on Ser(187) in both rat insulinoma INS-1 cells and rat islets in response to the phorbol ester, PMA; (ii) less than 35% of SNAP-25 in INS-1 cells is phosphorylated in response to PMA, and phosphorylation is limited to plasma-membrane-associated SNAP-25; (iii) both SNAP-25 isoforms (a and b) are phosphorylated, with 1.8-fold greater phosphorylation for SNAP-25b in response to PMA; (iv) in rat islets, Ser(187) phosphorylation is stimulated by glucose or carbachol, albeit to a lesser extent than by PMA, but not by cAMP; (v) insulin secretion from botulinum neurotoxin E-treated hamster insulinoma tumour (HIT) cells, transfected with toxin-resistant Ser(187)-->Ala or Ser(187)-->Asp mutant SNAP-25, was similar to that of wild-type HIT cells. Furthermore, in rat islets no correlation was found between the extent of SNAP-25 phosphorylation at Ser(187) in response to secretagogues and stimulation of insulin release; (vi) use of protein kinase C (PKC) inhibitors suggests that glucose stimulates SNAP-25 phosphorylation via conventional and non-conventional PKC isoforms. In summary, although SNAP-25 phosphorylation at Ser(187) occurs in insulin-secreting cells and is mediated by PKC, it does not appear to play a major role in regulated insulin secretion.
Full Text
The Full Text of this article is available as a PDF (311.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asfari M., Janjic D., Meda P., Li G., Halban P. A., Wollheim C. B. Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines. Endocrinology. 1992 Jan;130(1):167–178. doi: 10.1210/endo.130.1.1370150. [DOI] [PubMed] [Google Scholar]
- Bark I. C., Wilson M. C. Human cDNA clones encoding two different isoforms of the nerve terminal protein SNAP-25. Gene. 1994 Feb 25;139(2):291–292. doi: 10.1016/0378-1119(94)90773-0. [DOI] [PubMed] [Google Scholar]
- Biden T. J., Peter-Riesch B., Schlegel W., Wollheim C. B. Ca2+-mediated generation of inositol 1,4,5-triphosphate and inositol 1,3,4,5-tetrakisphosphate in pancreatic islets. Studies with K+, glucose, and carbamylcholine. J Biol Chem. 1987 Mar 15;262(8):3567–3571. [PubMed] [Google Scholar]
- Braiman L., Alt A., Kuroki T., Ohba M., Bak A., Tennenbaum T., Sampson S. R. Activation of protein kinase C zeta induces serine phosphorylation of VAMP2 in the GLUT4 compartment and increases glucose transport in skeletal muscle. Mol Cell Biol. 2001 Nov;21(22):7852–7861. doi: 10.1128/MCB.21.22.7852-7861.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cabaniols J. P., Ravichandran V., Roche P. A. Phosphorylation of SNAP-23 by the novel kinase SNAK regulates t-SNARE complex assembly. Mol Biol Cell. 1999 Dec;10(12):4033–4041. doi: 10.1091/mbc.10.12.4033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Camilli P., Benfenati F., Valtorta F., Greengard P. The synapsins. Annu Rev Cell Biol. 1990;6:433–460. doi: 10.1146/annurev.cb.06.110190.002245. [DOI] [PubMed] [Google Scholar]
- Foletti D. L., Lin R., Finley M. A., Scheller R. H. Phosphorylated syntaxin 1 is localized to discrete domains along a subset of axons. J Neurosci. 2000 Jun 15;20(12):4535–4544. doi: 10.1523/JNEUROSCI.20-12-04535.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Foster L. J., Yeung B., Mohtashami M., Ross K., Trimble W. S., Klip A. Binary interactions of the SNARE proteins syntaxin-4, SNAP23, and VAMP-2 and their regulation by phosphorylation. Biochemistry. 1998 Aug 4;37(31):11089–11096. doi: 10.1021/bi980253t. [DOI] [PubMed] [Google Scholar]
- Ganesan S., Calle R., Zawalich K., Greenawalt K., Zawalich W., Shulman G. I., Rasmussen H. Immunocytochemical localization of alpha-protein kinase C in rat pancreatic beta-cells during glucose-induced insulin secretion. J Cell Biol. 1992 Oct;119(2):313–324. doi: 10.1083/jcb.119.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ganesan S., Calle R., Zawalich K., Smallwood J. I., Zawalich W. S., Rasmussen H. Glucose-induced translocation of protein kinase C in rat pancreatic islets. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9893–9897. doi: 10.1073/pnas.87.24.9893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gao Z. Y., Drews G., Nenquin M., Plant T. D., Henquin J. C. Mechanisms of the stimulation of insulin release by arginine-vasopressin in normal mouse islets. J Biol Chem. 1990 Sep 15;265(26):15724–15730. [PubMed] [Google Scholar]
- Genoud S., Pralong W., Riederer B. M., Eder L., Catsicas S., Muller D. Activity-dependent phosphorylation of SNAP-25 in hippocampal organotypic cultures. J Neurochem. 1999 Apr;72(4):1699–1706. doi: 10.1046/j.1471-4159.1999.721699.x. [DOI] [PubMed] [Google Scholar]
- Gerona R. R., Larsen E. C., Kowalchyk J. A., Martin T. F. The C terminus of SNAP25 is essential for Ca(2+)-dependent binding of synaptotagmin to SNARE complexes. J Biol Chem. 2000 Mar 3;275(9):6328–6336. doi: 10.1074/jbc.275.9.6328. [DOI] [PubMed] [Google Scholar]
- Gonelle-Gispert C., Halban P. A., Niemann H., Palmer M., Catsicas S., Sadoul K. SNAP-25a and -25b isoforms are both expressed in insulin-secreting cells and can function in insulin secretion. Biochem J. 1999 Apr 1;339(Pt 1):159–165. [PMC free article] [PubMed] [Google Scholar]
- Gonelle-Gispert C., Molinete M., Halban P. A., Sadoul K. Membrane localization and biological activity of SNAP-25 cysteine mutants in insulin-secreting cells. J Cell Sci. 2000 Sep;113(Pt 18):3197–3205. doi: 10.1242/jcs.113.18.3197. [DOI] [PubMed] [Google Scholar]
- Goodall A. R., Turner N. A., Walker J. H., Ball S. G., Vaughan P. F. Activation of protein kinase C-alpha and translocation of the myristoylated alanine-rich C-kinase substrate correlate with phorbol ester-enhanced noradrenaline release from SH-SY5Y human neuroblastoma cells. J Neurochem. 1997 Jan;68(1):392–401. doi: 10.1046/j.1471-4159.1997.68010392.x. [DOI] [PubMed] [Google Scholar]
- Hirling H., Scheller R. H. Phosphorylation of synaptic vesicle proteins: modulation of the alpha SNAP interaction with the core complex. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11945–11949. doi: 10.1073/pnas.93.21.11945. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iwasaki S., Kataoka M., Sekiguchi M., Shimazaki Y., Sato K., Takahashi M. Two distinct mechanisms underlie the stimulation of neurotransmitter release by phorbol esters in clonal rat pheochromocytoma PC12 cells. J Biochem. 2000 Sep;128(3):407–414. doi: 10.1093/oxfordjournals.jbchem.a022768. [DOI] [PubMed] [Google Scholar]
- Jones P. M., Persaud S. J. Protein kinases, protein phosphorylation, and the regulation of insulin secretion from pancreatic beta-cells. Endocr Rev. 1998 Aug;19(4):429–461. doi: 10.1210/edrv.19.4.0339. [DOI] [PubMed] [Google Scholar]
- Kataoka M., Kuwahara R., Iwasaki S., Shoji-Kasai Y., Takahashi M. Nerve growth factor-induced phosphorylation of SNAP-25 in PC12 cells: a possible involvement in the regulation of SNAP-25 localization. J Neurochem. 2000 May;74(5):2058–2066. doi: 10.1046/j.1471-4159.2000.0742058.x. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Li G., Hidaka H., Wollheim C. B. Inhibition of voltage-gated Ca2+ channels and insulin secretion in HIT cells by the Ca2+/calmodulin-dependent protein kinase II inhibitor KN-62: comparison with antagonists of calmodulin and L-type Ca2+ channels. Mol Pharmacol. 1992 Sep;42(3):489–488. [PubMed] [Google Scholar]
- Lin R. C., Scheller R. H. Structural organization of the synaptic exocytosis core complex. Neuron. 1997 Nov;19(5):1087–1094. doi: 10.1016/s0896-6273(00)80399-2. [DOI] [PubMed] [Google Scholar]
- Liu J. P., Powell K. A., Südhof T. C., Robinson P. J. Dynamin I is a Ca(2+)-sensitive phospholipid-binding protein with very high affinity for protein kinase C. J Biol Chem. 1994 Aug 19;269(33):21043–21050. [PubMed] [Google Scholar]
- Malaisse W. J., Dunlop M. E., Mathias P. C., Malaisse-Lagae F., Sener A. Stimulation of protein kinase C and insulin release by 1-oleoyl-2-acetyl-glycerol. Eur J Biochem. 1985 May 15;149(1):23–27. doi: 10.1111/j.1432-1033.1985.tb08887.x. [DOI] [PubMed] [Google Scholar]
- Nielander H. B., Onofri F., Valtorta F., Schiavo G., Montecucco C., Greengard P., Benfenati F. Phosphorylation of VAMP/synaptobrevin in synaptic vesicles by endogenous protein kinases. J Neurochem. 1995 Oct;65(4):1712–1720. doi: 10.1046/j.1471-4159.1995.65041712.x. [DOI] [PubMed] [Google Scholar]
- Pang D. T., Wang J. K., Valtorta F., Benfenati F., Greengard P. Protein tyrosine phosphorylation in synaptic vesicles. Proc Natl Acad Sci U S A. 1988 Feb;85(3):762–766. doi: 10.1073/pnas.85.3.762. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Persaud S. J., Jones P. M., Sugden D., Howell S. L. Translocation of protein kinase C in rat islets of Langerhans. Effects of a phorbol ester, carbachol and glucose. FEBS Lett. 1989 Mar 13;245(1-2):80–84. doi: 10.1016/0014-5793(89)80196-6. [DOI] [PubMed] [Google Scholar]
- Peter-Riesch B., Fathi M., Schlegel W., Wollheim C. B. Glucose and carbachol generate 1,2-diacylglycerols by different mechanisms in pancreatic islets. J Clin Invest. 1988 Apr;81(4):1154–1161. doi: 10.1172/JCI113430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Risinger C., Bennett M. K. Differential phosphorylation of syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) isoforms. J Neurochem. 1999 Feb;72(2):614–624. doi: 10.1046/j.1471-4159.1999.0720614.x. [DOI] [PubMed] [Google Scholar]
- Rorsman Patrik, Eliasson Lena, Renström Erik, Gromada Jesper, Barg Sebastian, Göpel Sven. The Cell Physiology of Biphasic Insulin Secretion. News Physiol Sci. 2000 Apr;15(NaN):72–77. doi: 10.1152/physiologyonline.2000.15.2.72. [DOI] [PubMed] [Google Scholar]
- Rouiller D. G., Cirulli V., Halban P. A. Differences in aggregation properties and levels of the neural cell adhesion molecule (NCAM) between islet cell types. Exp Cell Res. 1990 Dec;191(2):305–312. doi: 10.1016/0014-4827(90)90019-7. [DOI] [PubMed] [Google Scholar]
- Sadoul K., Berger A., Niemann H., Weller U., Roche P. A., Klip A., Trimble W. S., Regazzi R., Catsicas S., Halban P. A. SNAP-23 is not cleaved by botulinum neurotoxin E and can replace SNAP-25 in the process of insulin secretion. J Biol Chem. 1997 Dec 26;272(52):33023–33027. doi: 10.1074/jbc.272.52.33023. [DOI] [PubMed] [Google Scholar]
- Sadoul K., Lang J., Montecucco C., Weller U., Regazzi R., Catsicas S., Wollheim C. B., Halban P. A. SNAP-25 is expressed in islets of Langerhans and is involved in insulin release. J Cell Biol. 1995 Mar;128(6):1019–1028. doi: 10.1083/jcb.128.6.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schiavo G., Santucci A., Dasgupta B. R., Mehta P. P., Jontes J., Benfenati F., Wilson M. C., Montecucco C. Botulinum neurotoxins serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide bonds. FEBS Lett. 1993 Nov 29;335(1):99–103. doi: 10.1016/0014-5793(93)80448-4. [DOI] [PubMed] [Google Scholar]
- Shimazaki Y., Nishiki T., Omori A., Sekiguchi M., Kamata Y., Kozaki S., Takahashi M. Phosphorylation of 25-kDa synaptosome-associated protein. Possible involvement in protein kinase C-mediated regulation of neurotransmitter release. J Biol Chem. 1996 Jun 14;271(24):14548–14553. doi: 10.1074/jbc.271.24.14548. [DOI] [PubMed] [Google Scholar]
- Söllner T., Whiteheart S. W., Brunner M., Erdjument-Bromage H., Geromanos S., Tempst P., Rothman J. E. SNAP receptors implicated in vesicle targeting and fusion. Nature. 1993 Mar 25;362(6418):318–324. doi: 10.1038/362318a0. [DOI] [PubMed] [Google Scholar]
- Virji M. A., Steffes M. W., Estensen R. D. Phorbol myristate acetate: effect of a tumor promoter on insulin release from isolated rat islets of Langerhans. Endocrinology. 1978 Mar;102(3):706–711. doi: 10.1210/endo-102-3-706. [DOI] [PubMed] [Google Scholar]
- Vitale M. L., Seward E. P., Trifaró J. M. Chromaffin cell cortical actin network dynamics control the size of the release-ready vesicle pool and the initial rate of exocytosis. Neuron. 1995 Feb;14(2):353–363. doi: 10.1016/0896-6273(95)90291-0. [DOI] [PubMed] [Google Scholar]
- Wollheim C. B., Dunne M. J., Peter-Riesch B., Bruzzone R., Pozzan T., Petersen O. H. Activators of protein kinase C depolarize insulin-secreting cells by closing K+ channels. EMBO J. 1988 Aug;7(8):2443–2449. doi: 10.1002/j.1460-2075.1988.tb03090.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yedovitzky M., Mochly-Rosen D., Johnson J. A., Gray M. O., Ron D., Abramovitch E., Cerasi E., Nesher R. Translocation inhibitors define specificity of protein kinase C isoenzymes in pancreatic beta-cells. J Biol Chem. 1997 Jan 17;272(3):1417–1420. doi: 10.1074/jbc.272.3.1417. [DOI] [PubMed] [Google Scholar]
- Zhou J., Egan J. M. SNAP-25 is phosphorylated by glucose and GLP-1 in RIN 1046-38 cells. Biochem Biophys Res Commun. 1997 Sep 18;238(2):297–300. doi: 10.1006/bbrc.1997.7286. [DOI] [PubMed] [Google Scholar]