Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Nov 15;368(Pt 1):131–136. doi: 10.1042/BJ20020724

Promoter-specific inhibition of transcription by daunorubicin in Saccharomyces cerevisiae.

Silvia Marín 1, Sylvia Mansilla 1, Natàlia García-Reyero 1, Marta Rojas 1, José Portugal 1, Benjamin Piña 1
PMCID: PMC1222970  PMID: 12164785

Abstract

Several anti-tumour drugs exert some of their cytotoxic effects by direct binding to DNA, thus inhibiting the transcription of certain genes. We analysed the influence of the anti-tumour antibiotic daunorubicin on the transcription of different genes in vivo using the budding yeast Saccharomyces cerevisiae. Daunorubicin only affected wild-type yeast strains at very high concentrations; however, erg6 mutant strains (but not pdr1, pdr3 or pdr5 strains) were sensitive to daunorubicin at low micromolar concentrations. In Delta erg6 strains, daunorubicin inhibited the galactose-induced transcription by Gal4p in a specific manner, since the transcription of identical reporters driven by other activators (either constitutive or inducible) was not inhibited. The drug concentrations at which Gal4p function was inhibited did not affect cell growth or viability. Furthermore, daunorubicin inhibited the growth in galactose and the transcriptional induction of resident Gal4p-driven genes upon galactose addition, two processes absolutely dependent on Gal4p function. We propose that daunorubicin and some transcription factors compete for DNA sequences encompassing CpG steps, and that this is the main determinant of the effects of the drug on transcription in vivo. Our approach may foster the development of anti-tumour drugs with more specific mechanisms of action.

Full Text

The Full Text of this article is available as a PDF (161.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balzi E., Goffeau A. Yeast multidrug resistance: the PDR network. J Bioenerg Biomembr. 1995 Feb;27(1):71–76. doi: 10.1007/BF02110333. [DOI] [PubMed] [Google Scholar]
  2. Becker D. M., Guarente L. High-efficiency transformation of yeast by electroporation. Methods Enzymol. 1991;194:182–187. doi: 10.1016/0076-6879(91)94015-5. [DOI] [PubMed] [Google Scholar]
  3. Belloc F., Lacombe F., Dumain P., Lopez F., Bernard P., Boisseau M. R., Reifers J. Intercalation of anthracyclines into living cell DNA analyzed by flow cytometry. Cytometry. 1992;13(8):880–885. doi: 10.1002/cyto.990130811. [DOI] [PubMed] [Google Scholar]
  4. Capranico G., Kohn K. W., Pommier Y. Local sequence requirements for DNA cleavage by mammalian topoisomerase II in the presence of doxorubicin. Nucleic Acids Res. 1990 Nov 25;18(22):6611–6619. doi: 10.1093/nar/18.22.6611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chaires J. B., Fox K. R., Herrera J. E., Britt M., Waring M. J. Site and sequence specificity of the daunomycin-DNA interaction. Biochemistry. 1987 Dec 15;26(25):8227–8236. doi: 10.1021/bi00399a031. [DOI] [PubMed] [Google Scholar]
  6. Coldham N. G., Dave M., Sivapathasundaram S., McDonnell D. P., Connor C., Sauer M. J. Evaluation of a recombinant yeast cell estrogen screening assay. Environ Health Perspect. 1997 Jul;105(7):734–742. doi: 10.1289/ehp.97105734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Di Marco A., Silvestrini R., Di Marco S., Dasdia T. Inhibiting effect of the new cytotoxic antibiotic daunomycin on nucleic acids and mitotic activity of HeLa cells. J Cell Biol. 1965 Dec;27(3):545–550. doi: 10.1083/jcb.27.3.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ferguson L. R., Turner P. M. 'Petite' mutagenesis by anticancer drugs in Saccharomyces cerevisiae. Eur J Cancer Clin Oncol. 1988 Apr;24(4):591–596. doi: 10.1016/0277-5379(88)90286-6. [DOI] [PubMed] [Google Scholar]
  9. Frederick C. A., Williams L. D., Ughetto G., van der Marel G. A., van Boom J. H., Rich A., Wang A. H. Structural comparison of anticancer drug-DNA complexes: adriamycin and daunomycin. Biochemistry. 1990 Mar 13;29(10):2538–2549. [PubMed] [Google Scholar]
  10. García-Reyero N., Grau E., Castillo M., López de Alda M. J., Barceló D., Piña B. Monitoring of endocrine disruptors in surface waters by the yeast recombinant assay. Environ Toxicol Chem. 2001 Jun;20(6):1152–1158. doi: 10.1897/1551-5028(2001)020<1152:moedis>2.0.co;2. [DOI] [PubMed] [Google Scholar]
  11. Gewirtz D. A. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol. 1999 Apr 1;57(7):727–741. doi: 10.1016/s0006-2952(98)00307-4. [DOI] [PubMed] [Google Scholar]
  12. Gottesfeld J. M., Neely L., Trauger J. W., Baird E. E., Dervan P. B. Regulation of gene expression by small molecules. Nature. 1997 May 8;387(6629):202–205. doi: 10.1038/387202a0. [DOI] [PubMed] [Google Scholar]
  13. Gottesfeld J. M., Turner J. M., Dervan P. B. Chemical approaches to control gene expression. Gene Expr. 2000;9(1-2):77–91. doi: 10.3727/000000001783992696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Idrissi F. Z., Fernández-Larrea J. B., Piña B. Structural and functional heterogeneity of Rap1p complexes with telomeric and UASrpg-like DNA sequences. J Mol Biol. 1998 Dec 11;284(4):925–935. doi: 10.1006/jmbi.1998.2215. [DOI] [PubMed] [Google Scholar]
  15. Idrissi F. Z., Garcia-Reyero N., Fernandez-Larrea J. B., Piña B. Alternative mechanisms of transcriptional activation by Rap1p. J Biol Chem. 2001 May 17;276(28):26090–26098. doi: 10.1074/jbc.M101746200. [DOI] [PubMed] [Google Scholar]
  16. Kriebardis T., Meng D., Aktipis S. Inhibition of the RNA polymerase-catalyzed synthesis of RNA by daunomycin. Effect of the inhibitor on the late steps of RNA chain initiation. J Biol Chem. 1987 Sep 15;262(26):12632–12640. [PubMed] [Google Scholar]
  17. Kule C., Ondrejickova O., Verner K. Doxorubicin, daunorubicin, and mitoxantrone cytotoxicity in yeast. Mol Pharmacol. 1994 Dec;46(6):1234–1240. [PubMed] [Google Scholar]
  18. Lampidis T. J., Kolonias D., Podona T., Israel M., Safa A. R., Lothstein L., Savaraj N., Tapiero H., Priebe W. Circumvention of P-GP MDR as a function of anthracycline lipophilicity and charge. Biochemistry. 1997 Mar 4;36(9):2679–2685. doi: 10.1021/bi9614489. [DOI] [PubMed] [Google Scholar]
  19. Leng F., Leno G. H. Daunomycin disrupts nuclear assembly and the coordinate initiation of DNA replication in Xenopus egg extracts. J Cell Biochem. 1997 Mar 1;64(3):476–491. doi: 10.1002/(sici)1097-4644(19970301)64:3<476::aid-jcb14>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
  20. Liang S. D., Marmorstein R., Harrison S. C., Ptashne M. DNA sequence preferences of GAL4 and PPR1: how a subset of Zn2 Cys6 binuclear cluster proteins recognizes DNA. Mol Cell Biol. 1996 Jul;16(7):3773–3780. doi: 10.1128/mcb.16.7.3773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Martín B., Vaquero A., Priebe W., Portugal J. Bisanthracycline WP631 inhibits basal and Sp1-activated transcription initiation in vitro. Nucleic Acids Res. 1999 Sep 1;27(17):3402–3409. doi: 10.1093/nar/27.17.3402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nitiss J., Wang J. C. DNA topoisomerase-targeting antitumor drugs can be studied in yeast. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7501–7505. doi: 10.1073/pnas.85.20.7501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Perego P., Jimenez G. S., Gatti L., Howell S. B., Zunino F. Yeast mutants as a model system for identification of determinants of chemosensitivity. Pharmacol Rev. 2000 Dec;52(4):477–492. [PubMed] [Google Scholar]
  24. Priebe W., Fokt I., Przewloka T., Chaires J. B., Portugal J., Trent J. O. Exploiting anthracycline scaffold for designing DNA-targeting agents. Methods Enzymol. 2001;340:529–555. doi: 10.1016/s0076-6879(01)40441-1. [DOI] [PubMed] [Google Scholar]
  25. Schneider J. C., Guarente L. Vectors for expression of cloned genes in yeast: regulation, overproduction, and underproduction. Methods Enzymol. 1991;194:373–388. doi: 10.1016/0076-6879(91)94028-b. [DOI] [PubMed] [Google Scholar]
  26. Sherman F. Getting started with yeast. Methods Enzymol. 1991;194:3–21. doi: 10.1016/0076-6879(91)94004-v. [DOI] [PubMed] [Google Scholar]
  27. Spellman P. T., Sherlock G., Zhang M. Q., Iyer V. R., Anders K., Eisen M. B., Brown P. O., Botstein D., Futcher B. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell. 1998 Dec;9(12):3273–3297. doi: 10.1091/mbc.9.12.3273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Taylor A., Webster K. A., Gustafson T. A., Kedes L. The anti-cancer agent distamycin A displaces essential transcription factors and selectively inhibits myogenic differentiation. Mol Cell Biochem. 1997 Apr;169(1-2):61–72. doi: 10.1023/a:1006898812618. [DOI] [PubMed] [Google Scholar]
  29. Valentini L., Nicolella V., Vannini E., Menozzi M., Penco S., Arcamone F. Association of anthracycline derivatives with DNA: a fluorescence study. Farmaco Sci. 1985 Jun;40(6):377–390. [PubMed] [Google Scholar]
  30. Villamarín Silvia, Ferrer-Miralles Neus, Mansilla Sylvia, Priebe Waldemar, Portugal José. Induction of G(2)/M arrest and inhibition of c-myc and p53 transcription by WP631 in Jurkat T lymphocytes. Biochem Pharmacol. 2002 Apr 1;63(7):1251–1258. doi: 10.1016/s0006-2952(02)00865-1. [DOI] [PubMed] [Google Scholar]
  31. Weiss R. B. The anthracyclines: will we ever find a better doxorubicin? Semin Oncol. 1992 Dec;19(6):670–686. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES