Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Nov 15;368(Pt 1):171–182. doi: 10.1042/BJ20020385

Role of proline, cysteine and a disulphide bridge in the structure and activity of the anti-microbial peptide gaegurin 5.

Sang-Ho Park 1, Hyung-Eun Kim 1, Chi-Man Kim 1, Hee-Jeong Yun 1, Eung-Chil Choi 1, Bong-Jin Lee 1
PMCID: PMC1222972  PMID: 12164787

Abstract

Gaegurin 5 (GGN5) is a cationic 24-residue anti-microbial peptide isolated from the skin of a Korean frog, Rana rugosa. It contains a central proline residue and an intra-residue disulphide bridge in its C-terminus, which are common to the anti-microbial peptides found in Ranidae. We determined the solution structure of GGN5 bound to SDS micelles for the first time and investigated the role of proline, cysteine and a disulphide bridge on the structure and activity of GGN5. GGN5 adopts an amphipathic alpha-helical structure spanning residues 3-20 kinked around Pro-14, which allows the hydrophobic residues to reside in the concave helical region, and a disulphide-bridged loop-like conformation in its C-terminus. By replacement of proline with alanine (PAGGN5), a straight and rigid helix was formed in the central region and was more stable than the kinked helix. Reduction of a disulphide bridge in the C-terminus (GGN5SH) maintained the loosely ordered loop-like conformation, while the replacement of two cysteines with serines (CSGGN5) caused the C-terminal conformation to be completely disordered. The magnitude of anti-microbial activity of the peptides was closely related to their helical stability in the order PAGGN5>GGN5>GGN5SH>CSGGN5, suggesting that the helical stability of the peptides is important for anti-microbial activity. On the other hand, the significant increase of haemolytic activity of PAGGN5 implies that a helical kink of GGN5 could be involved in the selectivity of target cells. The location of GGN5 and PAGGN5, analysed using paramagnetic probes, was mainly at the surface of SDS micelles, although the location of the N-terminal region was slightly different between them.

Full Text

The Full Text of this article is available as a PDF (399.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bader R., Bettio A., Beck-Sickinger A. G., Zerbe O. Structure and dynamics of micelle-bound neuropeptide Y: comparison with unligated NPY and implications for receptor selection. J Mol Biol. 2001 Jan 12;305(2):307–329. doi: 10.1006/jmbi.2000.4264. [DOI] [PubMed] [Google Scholar]
  2. Beinert D., Neumann L., Uebel S., Tampé R. Structure of the viral TAP-inhibitor ICP47 induced by membrane association. Biochemistry. 1997 Apr 15;36(15):4694–4700. doi: 10.1021/bi962940v. [DOI] [PubMed] [Google Scholar]
  3. Bessalle R., Gorea A., Shalit I., Metzger J. W., Dass C., Desiderio D. M., Fridkin M. Structure-function studies of amphiphilic antibacterial peptides. J Med Chem. 1993 Apr 30;36(9):1203–1209. doi: 10.1021/jm00061a011. [DOI] [PubMed] [Google Scholar]
  4. Blondelle S. E., Houghten R. A. Design of model amphipathic peptides having potent antimicrobial activities. Biochemistry. 1992 Dec 22;31(50):12688–12694. doi: 10.1021/bi00165a020. [DOI] [PubMed] [Google Scholar]
  5. Blondelle S. E., Houghten R. A. Probing the relationships between the structure and hemolytic activity of melittin with a complete set of leucine substitution analogs. Pept Res. 1991 Jan-Feb;4(1):12–18. [PubMed] [Google Scholar]
  6. Boman H. G. Peptide antibiotics and their role in innate immunity. Annu Rev Immunol. 1995;13:61–92. doi: 10.1146/annurev.iy.13.040195.000425. [DOI] [PubMed] [Google Scholar]
  7. Chia B. C., Carver J. A., Mulhern T. D., Bowie J. H. Maculatin 1.1, an anti-microbial peptide from the Australian tree frog, Litoria genimaculata solution structure and biological activity. Eur J Biochem. 2000 Apr;267(7):1894–1908. doi: 10.1046/j.1432-1327.2000.01089.x. [DOI] [PubMed] [Google Scholar]
  8. Clark D. P., Durell S., Maloy W. L., Zasloff M. Ranalexin. A novel antimicrobial peptide from bullfrog (Rana catesbeiana) skin, structurally related to the bacterial antibiotic, polymyxin. J Biol Chem. 1994 Apr 8;269(14):10849–10855. [PubMed] [Google Scholar]
  9. Dathe M., Kaduk C., Tachikawa E., Melzig M. F., Wenschuh H., Bienert M. Proline at position 14 of alamethicin is essential for hemolytic activity, catecholamine secretion from chromaffin cells and enhanced metabolic activity in endothelial cells. Biochim Biophys Acta. 1998 Mar 6;1370(1):175–183. doi: 10.1016/s0005-2736(97)00260-5. [DOI] [PubMed] [Google Scholar]
  10. Delaglio F., Grzesiek S., Vuister G. W., Zhu G., Pfeifer J., Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995 Nov;6(3):277–293. doi: 10.1007/BF00197809. [DOI] [PubMed] [Google Scholar]
  11. Dempsey C. E., Bazzo R., Harvey T. S., Syperek I., Boheim G., Campbell I. D. Contribution of proline-14 to the structure and actions of melittin. FEBS Lett. 1991 Apr 9;281(1-2):240–244. doi: 10.1016/0014-5793(91)80402-o. [DOI] [PubMed] [Google Scholar]
  12. Eisenberg D., Schwarz E., Komaromy M., Wall R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol. 1984 Oct 15;179(1):125–142. doi: 10.1016/0022-2836(84)90309-7. [DOI] [PubMed] [Google Scholar]
  13. Esposito G., Carver J. A., Boyd J., Campbell I. D. High-resolution 1H NMR study of the solution structure of alamethicin. Biochemistry. 1987 Feb 24;26(4):1043–1050. doi: 10.1021/bi00378a010. [DOI] [PubMed] [Google Scholar]
  14. Gazit E., Boman A., Boman H. G., Shai Y. Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles. Biochemistry. 1995 Sep 12;34(36):11479–11488. doi: 10.1021/bi00036a021. [DOI] [PubMed] [Google Scholar]
  15. Gesell J., Zasloff M., Opella S. J. Two-dimensional 1H NMR experiments show that the 23-residue magainin antibiotic peptide is an alpha-helix in dodecylphosphocholine micelles, sodium dodecylsulfate micelles, and trifluoroethanol/water solution. J Biomol NMR. 1997 Feb;9(2):127–135. doi: 10.1023/a:1018698002314. [DOI] [PubMed] [Google Scholar]
  16. Gibson B. W., Tang D. Z., Mandrell R., Kelly M., Spindel E. R. Bombinin-like peptides with antimicrobial activity from skin secretions of the Asian toad, Bombina orientalis. J Biol Chem. 1991 Dec 5;266(34):23103–23111. [PubMed] [Google Scholar]
  17. Glombik M. M., Krömer A., Salm T., Huttner W. B., Gerdes H. H. The disulfide-bonded loop of chromogranin B mediates membrane binding and directs sorting from the trans-Golgi network to secretory granules. EMBO J. 1999 Feb 15;18(4):1059–1070. doi: 10.1093/emboj/18.4.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jarvet J., Zdunek J., Damberg P., Gräslund A. Three-dimensional structure and position of porcine motilin in sodium dodecyl sulfate micelles determined by 1H NMR. Biochemistry. 1997 Jul 1;36(26):8153–8163. doi: 10.1021/bi970193b. [DOI] [PubMed] [Google Scholar]
  19. Kagan B. L., Ganz T., Lehrer R. I. Defensins: a family of antimicrobial and cytotoxic peptides. Toxicology. 1994 Feb 28;87(1-3):131–149. doi: 10.1016/0300-483x(94)90158-9. [DOI] [PubMed] [Google Scholar]
  20. Kawano K., Yoneya T., Miyata T., Yoshikawa K., Tokunaga F., Terada Y., Iwanaga S. Antimicrobial peptide, tachyplesin I, isolated from hemocytes of the horseshoe crab (Tachypleus tridentatus). NMR determination of the beta-sheet structure. J Biol Chem. 1990 Sep 15;265(26):15365–15367. [PubMed] [Google Scholar]
  21. Kobayashi S., Takeshima K., Park C. B., Kim S. C., Matsuzaki K. Interactions of the novel antimicrobial peptide buforin 2 with lipid bilayers: proline as a translocation promoting factor. Biochemistry. 2000 Jul 25;39(29):8648–8654. doi: 10.1021/bi0004549. [DOI] [PubMed] [Google Scholar]
  22. Kwon M. Y., Hong S. Y., Lee K. H. Structure-activity analysis of brevinin 1E amide, an antimicrobial peptide from Rana esculenta. Biochim Biophys Acta. 1998 Sep 8;1387(1-2):239–248. doi: 10.1016/s0167-4838(98)00123-x. [DOI] [PubMed] [Google Scholar]
  23. Lee S., Mihara H., Aoyagi H., Kato T., Izumiya N., Yamasaki N. Relationship between antimicrobial activity and amphiphilic property of basic model peptides. Biochim Biophys Acta. 1986 Nov 6;862(1):211–219. doi: 10.1016/0005-2736(86)90485-2. [DOI] [PubMed] [Google Scholar]
  24. Matsuzaki K., Nakayama M., Fukui M., Otaka A., Funakoshi S., Fujii N., Bessho K., Miyajima K. Role of disulfide linkages in tachyplesin-lipid interactions. Biochemistry. 1993 Nov 2;32(43):11704–11710. doi: 10.1021/bi00094a029. [DOI] [PubMed] [Google Scholar]
  25. Matsuzaki K., Yoneyama S., Fujii N., Miyajima K., Yamada K., Kirino Y., Anzai K. Membrane permeabilization mechanisms of a cyclic antimicrobial peptide, tachyplesin I, and its linear analog. Biochemistry. 1997 Aug 12;36(32):9799–9806. doi: 10.1021/bi970588v. [DOI] [PubMed] [Google Scholar]
  26. Mor A., Nguyen V. H., Delfour A., Migliore-Samour D., Nicolas P. Isolation, amino acid sequence, and synthesis of dermaseptin, a novel antimicrobial peptide of amphibian skin. Biochemistry. 1991 Sep 10;30(36):8824–8830. doi: 10.1021/bi00100a014. [DOI] [PubMed] [Google Scholar]
  27. Morikawa N., Hagiwara K., Nakajima T. Brevinin-1 and -2, unique antimicrobial peptides from the skin of the frog, Rana brevipoda porsa. Biochem Biophys Res Commun. 1992 Nov 30;189(1):184–190. doi: 10.1016/0006-291x(92)91542-x. [DOI] [PubMed] [Google Scholar]
  28. Morrisett J. D., David J. S., Pownall H. J., Gotto A. M., Jr Interaction of an apolipoprotein (apoLP-alanine) with phosphatidylcholine. Biochemistry. 1973 Mar 27;12(7):1290–1299. doi: 10.1021/bi00731a008. [DOI] [PubMed] [Google Scholar]
  29. Nicolas P., Mor A. Peptides as weapons against microorganisms in the chemical defense system of vertebrates. Annu Rev Microbiol. 1995;49:277–304. doi: 10.1146/annurev.mi.49.100195.001425. [DOI] [PubMed] [Google Scholar]
  30. Nilges M., Gronenborn A. M., Brünger A. T., Clore G. M. Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints. Application to crambin, potato carboxypeptidase inhibitor and barley serine proteinase inhibitor 2. Protein Eng. 1988 Apr;2(1):27–38. doi: 10.1093/protein/2.1.27. [DOI] [PubMed] [Google Scholar]
  31. Park C. B., Yi K. S., Matsuzaki K., Kim M. S., Kim S. C. Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8245–8250. doi: 10.1073/pnas.150518097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Park J. M., Jung J. E., Lee B. J. Antimicrobial peptides from the skin of a Korean frog, Rana rugosa. Biochem Biophys Res Commun. 1994 Nov 30;205(1):948–954. doi: 10.1006/bbrc.1994.2757. [DOI] [PubMed] [Google Scholar]
  33. Park S. H., Kim Y. K., Park J. W., Lee B., Lee B. J. Solution structure of the antimicrobial peptide gaegurin 4 by H and 15N nuclear magnetic resonance spectroscopy. Eur J Biochem. 2000 May;267(9):2695–2704. doi: 10.1046/j.1432-1327.2000.01287.x. [DOI] [PubMed] [Google Scholar]
  34. Pathak N., Salas-Auvert R., Ruche G., Janna M. H., McCarthy D., Harrison R. G. Comparison of the effects of hydrophobicity, amphiphilicity, and alpha-helicity on the activities of antimicrobial peptides. Proteins. 1995 Jun;22(2):182–186. doi: 10.1002/prot.340220210. [DOI] [PubMed] [Google Scholar]
  35. Rex S. A Pro --> Ala substitution in melittin affects self-association, membrane binding and pore-formation kinetics due to changes in structural and electrostatic properties. Biophys Chem. 2000 Jul 15;85(2-3):209–228. doi: 10.1016/s0301-4622(00)00121-6. [DOI] [PubMed] [Google Scholar]
  36. Shao H., Jao S., Ma K., Zagorski M. G. Solution structures of micelle-bound amyloid beta-(1-40) and beta-(1-42) peptides of Alzheimer's disease. J Mol Biol. 1999 Jan 15;285(2):755–773. doi: 10.1006/jmbi.1998.2348. [DOI] [PubMed] [Google Scholar]
  37. Simmaco M., Barra D., Chiarini F., Noviello L., Melchiorri P., Kreil G., Richter K. A family of bombinin-related peptides from the skin of Bombina variegata. Eur J Biochem. 1991 Jul 1;199(1):217–222. doi: 10.1111/j.1432-1033.1991.tb16112.x. [DOI] [PubMed] [Google Scholar]
  38. Simmaco M., Mignogna G., Barra D., Bossa F. Novel antimicrobial peptides from skin secretion of the European frog Rana esculenta. FEBS Lett. 1993 Jun 14;324(2):159–161. doi: 10.1016/0014-5793(93)81384-c. [DOI] [PubMed] [Google Scholar]
  39. Suh J. Y., Lee K. H., Chi S. W., Hong S. Y., Choi B. W., Moon H. M., Choi B. S. Unusually stable helical kink in the antimicrobial peptide--a derivative of gaegurin. FEBS Lett. 1996 Sep 2;392(3):309–312. doi: 10.1016/0014-5793(96)00840-x. [DOI] [PubMed] [Google Scholar]
  40. Suh J. Y., Lee Y. T., Park C. B., Lee K. H., Kim S. C., Choi B. S. Structural and functional implications of a proline residue in the antimicrobial peptide gaegurin. Eur J Biochem. 1999 Dec;266(2):665–674. doi: 10.1046/j.1432-1327.1999.00917.x. [DOI] [PubMed] [Google Scholar]
  41. Vignal E., Chavanieu A., Roch P., Chiche L., Grassy G., Calas B., Aumelas A. Solution structure of the antimicrobial peptide ranalexin and a study of its interaction with perdeuterated dodecylphosphocholine micelles. Eur J Biochem. 1998 Apr 1;253(1):221–228. doi: 10.1046/j.1432-1327.1998.2530221.x. [DOI] [PubMed] [Google Scholar]
  42. Wagner G., Wüthrich K. Amide protein exchange and surface conformation of the basic pancreatic trypsin inhibitor in solution. Studies with two-dimensional nuclear magnetic resonance. J Mol Biol. 1982 Sep 15;160(2):343–361. doi: 10.1016/0022-2836(82)90180-2. [DOI] [PubMed] [Google Scholar]
  43. White S. H., Wimley W. C., Selsted M. E. Structure, function, and membrane integration of defensins. Curr Opin Struct Biol. 1995 Aug;5(4):521–527. doi: 10.1016/0959-440x(95)80038-7. [DOI] [PubMed] [Google Scholar]
  44. Wienk H. L., Czisch M., de Kruijff B. The structural flexibility of the preferredoxin transit peptide. FEBS Lett. 1999 Jun 25;453(3):318–326. doi: 10.1016/s0014-5793(99)00653-5. [DOI] [PubMed] [Google Scholar]
  45. Wishart D. S., Sykes B. D., Richards F. M. The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry. 1992 Feb 18;31(6):1647–1651. doi: 10.1021/bi00121a010. [DOI] [PubMed] [Google Scholar]
  46. Wüthrich K., Billeter M., Braun W. Pseudo-structures for the 20 common amino acids for use in studies of protein conformations by measurements of intramolecular proton-proton distance constraints with nuclear magnetic resonance. J Mol Biol. 1983 Oct 5;169(4):949–961. doi: 10.1016/s0022-2836(83)80144-2. [DOI] [PubMed] [Google Scholar]
  47. Yoon M. K., Park S. H., Won H. S., Na D. S., Lee B. J. Solution structure and membrane-binding property of the N-terminal tail domain of human annexin I. FEBS Lett. 2000 Nov 10;484(3):241–245. doi: 10.1016/s0014-5793(00)02160-8. [DOI] [PubMed] [Google Scholar]
  48. Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5449–5453. doi: 10.1073/pnas.84.15.5449. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES