Abstract
Cysteine proteases of Plasmodium falciparum, known as falcipains, have been identified as haemoglobinases and potential drug targets. As anti-malarial drug discovery requires the analysis of non-primate malaria, genes encoding related cysteine proteases of the rodent malaria parasites P. vinckei (vinckepain-2) and P. berghei (berghepain-2) were characterized. These genes encoded fairly typical papain-family proteases, but they contained an unusual substitution of Gly23 with Ala (papain numbering system). Vinckepain-2 was expressed in Escherichia coli, solubilized, refolded and autoprocessed to an active enzyme. The protease shared important features with the falcipains, including an acidic pH optimum, preference for reducing conditions, optimal cleavage of peptide substrates with P2 Leu and ready hydrolysis of haemoglobin. However, key differences between the plasmodial proteases were identified. In particular, vinckepain-2 showed very different kinetics against many substrates and an unusual preference for peptide substrates with P1 Gly. Replacement of Ala23 with Gly remarkably altered vinckepain-2, including loss of the P1 Gly substrate preference, markedly increased catalytic activity ( k cat/ K m increased approx. 100-fold) and more rapid autohydrolysis. The present study identifies key animal-model parasite targets. It indicates that drug discovery studies must take into account important differences between plasmodial proteases and sheds light on the critical role of amino acid 23 in catalysis by papain-family proteases.
Full Text
The Full Text of this article is available as a PDF (379.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Banerjee Ritu, Liu Jun, Beatty Wandy, Pelosof Lorraine, Klemba Michael, Goldberg Daniel E. Four plasmepsins are active in the Plasmodium falciparum food vacuole, including a protease with an active-site histidine. Proc Natl Acad Sci U S A. 2002 Jan 8;99(2):990–995. doi: 10.1073/pnas.022630099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berti P. J., Storer A. C. Alignment/phylogeny of the papain superfamily of cysteine proteases. J Mol Biol. 1995 Feb 17;246(2):273–283. doi: 10.1006/jmbi.1994.0083. [DOI] [PubMed] [Google Scholar]
- Breman J. G. The ears of the hippopotamus: manifestations, determinants, and estimates of the malaria burden. Am J Trop Med Hyg. 2001 Jan-Feb;64(1-2):1–11. doi: 10.4269/ajtmh.2001.64.1. [DOI] [PubMed] [Google Scholar]
- Buttle D. J. Glycyl endopeptidase. Methods Enzymol. 1994;244:539–555. doi: 10.1016/0076-6879(94)44039-5. [DOI] [PubMed] [Google Scholar]
- Eggleson K. K., Duffin K. L., Goldberg D. E. Identification and characterization of falcilysin, a metallopeptidase involved in hemoglobin catabolism within the malaria parasite Plasmodium falciparum. J Biol Chem. 1999 Nov 5;274(45):32411–32417. doi: 10.1074/jbc.274.45.32411. [DOI] [PubMed] [Google Scholar]
- Fox T., Mason P., Storer A. C., Mort J. S. Modification of S1 subsite specificity in the cysteine protease cathepsin B. Protein Eng. 1995 Jan;8(1):53–57. doi: 10.1093/protein/8.1.53. [DOI] [PubMed] [Google Scholar]
- Francis S. E., Gluzman I. Y., Oksman A., Knickerbocker A., Mueller R., Bryant M. L., Sherman D. R., Russell D. G., Goldberg D. E. Molecular characterization and inhibition of a Plasmodium falciparum aspartic hemoglobinase. EMBO J. 1994 Jan 15;13(2):306–317. doi: 10.1002/j.1460-2075.1994.tb06263.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris J. L., Backes B. J., Leonetti F., Mahrus S., Ellman J. A., Craik C. S. Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):7754–7759. doi: 10.1073/pnas.140132697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill J., Tyas L., Phylip L. H., Kay J., Dunn B. M., Berry C. High level expression and characterisation of Plasmepsin II, an aspartic proteinase from Plasmodium falciparum. FEBS Lett. 1994 Sep 26;352(2):155–158. doi: 10.1016/0014-5793(94)00940-6. [DOI] [PubMed] [Google Scholar]
- Hu Y. K., Eisses J. F., Kaplan J. H. Expression of an active Na,K-ATPase with an alpha-subunit lacking all twenty-three native cysteine residues. J Biol Chem. 2000 Sep 29;275(39):30734–30739. doi: 10.1074/jbc.M003737200. [DOI] [PubMed] [Google Scholar]
- O'Hara B. P., Hemmings A. M., Buttle D. J., Pearl L. H. Crystal structure of glycyl endopeptidase from Carica papaya: a cysteine endopeptidase of unusual substrate specificity. Biochemistry. 1995 Oct 10;34(40):13190–13195. doi: 10.1021/bi00040a034. [DOI] [PubMed] [Google Scholar]
- Olson J. E., Lee G. K., Semenov A., Rosenthal P. J. Antimalarial effects in mice of orally administered peptidyl cysteine protease inhibitors. Bioorg Med Chem. 1999 Apr;7(4):633–638. doi: 10.1016/s0968-0896(99)00004-8. [DOI] [PubMed] [Google Scholar]
- Rosenthal P. J. A Plasmodium vinckei cysteine proteinase shares unique features with its Plasmodium falciparum analogue. Biochim Biophys Acta. 1993 Apr 29;1173(1):91–93. doi: 10.1016/0167-4781(93)90250-h. [DOI] [PubMed] [Google Scholar]
- Rosenthal P. J. Conservation of key amino acids among the cysteine proteinases of multiple malarial species. Mol Biochem Parasitol. 1996 Jan;75(2):255–260. doi: 10.1016/0166-6851(95)02517-0. [DOI] [PubMed] [Google Scholar]
- Rosenthal P. J., Lee G. K., Smith R. E. Inhibition of a Plasmodium vinckei cysteine proteinase cures murine malaria. J Clin Invest. 1993 Mar;91(3):1052–1056. doi: 10.1172/JCI116262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenthal P. J., McKerrow J. H., Aikawa M., Nagasawa H., Leech J. H. A malarial cysteine proteinase is necessary for hemoglobin degradation by Plasmodium falciparum. J Clin Invest. 1988 Nov;82(5):1560–1566. doi: 10.1172/JCI113766. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenthal P. J., Wollish W. S., Palmer J. T., Rasnick D. Antimalarial effects of peptide inhibitors of a Plasmodium falciparum cysteine proteinase. J Clin Invest. 1991 Nov;88(5):1467–1472. doi: 10.1172/JCI115456. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenthal Philip J., Sijwali Puran S., Singh Ajay, Shenai Bhaskar R. Cysteine proteases of malaria parasites: targets for chemotherapy. Curr Pharm Des. 2002;8(18):1659–1672. doi: 10.2174/1381612023394197. [DOI] [PubMed] [Google Scholar]
- Sasaki K., Taura F., Shoyama Y., Morimoto S. Molecular characterization of a novel beta-glucuronidase from Scutellaria baicalensis georgi. J Biol Chem. 2000 Sep 1;275(35):27466–27472. doi: 10.1074/jbc.M004674200. [DOI] [PubMed] [Google Scholar]
- Shenai B. R., Sijwali P. S., Singh A., Rosenthal P. J. Characterization of native and recombinant falcipain-2, a principal trophozoite cysteine protease and essential hemoglobinase of Plasmodium falciparum. J Biol Chem. 2000 Sep 15;275(37):29000–29010. doi: 10.1074/jbc.M004459200. [DOI] [PubMed] [Google Scholar]
- Shenai Bhaskar R., Rosenthal Philip J. Reducing requirements for hemoglobin hydrolysis by Plasmodium falciparum cysteine proteases. Mol Biochem Parasitol. 2002 Jun;122(1):99–104. doi: 10.1016/s0166-6851(02)00075-0. [DOI] [PubMed] [Google Scholar]
- Sijwali P. S., Brinen L. S., Rosenthal P. J. Systematic optimization of expression and refolding of the Plasmodium falciparum cysteine protease falcipain-2. Protein Expr Purif. 2001 Jun;22(1):128–134. doi: 10.1006/prep.2001.1416. [DOI] [PubMed] [Google Scholar]
- Sijwali P. S., Shenai B. R., Gut J., Singh A., Rosenthal P. J. Expression and characterization of the Plasmodium falciparum haemoglobinase falcipain-3. Biochem J. 2001 Dec 1;360(Pt 2):481–489. doi: 10.1042/0264-6021:3600481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sijwali Puran S., Shenai Bhaskar R., Rosenthal Philip J. Folding of the Plasmodium falciparum cysteine protease falcipain-2 is mediated by a chaperone-like peptide and not the prodomain. J Biol Chem. 2002 Feb 4;277(17):14910–14915. doi: 10.1074/jbc.M109680200. [DOI] [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]