Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Nov 15;368(Pt 1):317–324. doi: 10.1042/BJ20020946

N-glycosylation is required for full enzymic activity of the murine galactosylceramide sulphotransferase.

Matthias Eckhardt 1, Simon N Fewou 1, Ivonne Ackermann 1, Volkmar Gieselmann 1
PMCID: PMC1222978  PMID: 12175333

Abstract

3- O -Sulphogalactosylceramide (sulphatide) is a major lipid component of myelin membranes, and is required for proper myelin formation. Sulphatide is synthesized in the Golgi apparatus by galactosylceramide sulphotransferase (CST; EC 2.8.2.11). Murine and human CSTs contain two putative N-glycosylation sites (Asn-66 and Asn-312). The second site is conserved among all galactose 3-O-sulphotransferases cloned to date. In order to study the functional relevance of N-glycosylation, we generated epitope-tagged CST and soluble Protein A-CST fusion proteins lacking both N-glycosylation sites, separately or in combination. Our results show that both sites are glycosylated when CST is expressed in Chinese hamster ovary (CHO) or COS cells. Moreover, transfecting CST mutants lacking both N-glycosylation sites, or only Asn-312, reduced significantly the amount of sulphatide synthesized, whereas substituting Asn-66 with a glutamine residue did not. In contrast, activity in vitro was reduced by approx. 50% in the Asn-66-->Gln (N66Q) mutant, and was almost undetectable in N312Q and N66/312Q transfectants. Furthermore, soluble Protein A-CST expressed in the presence of tunicamycin was almost inactive, and accumulated in transfected cells. Expression of fully active CST in a CHO-glycosylation mutant lacking N-acetylglucosaminyltransferase I demonstrated that condensation of the N-linked pentamannosyl-core structure is sufficient to form a fully active enzyme.

Full Text

The Full Text of this article is available as a PDF (333.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baboval T., Koul O., Smith F. I. N-glycosylation site occupancy of rat alpha-1,3-fucosyltransferase IV and the effect of glycosylation on enzymatic activity. Biochim Biophys Acta. 2000 Jul 26;1475(3):383–389. doi: 10.1016/s0304-4165(00)00094-5. [DOI] [PubMed] [Google Scholar]
  2. Bakker H., Friedmann I., Oka S., Kawasaki T., Nifant'ev N., Schachner M., Mantei N. Expression cloning of a cDNA encoding a sulfotransferase involved in the biosynthesis of the HNK-1 carbohydrate epitope. J Biol Chem. 1997 Nov 21;272(47):29942–29946. doi: 10.1074/jbc.272.47.29942. [DOI] [PubMed] [Google Scholar]
  3. Bethke U., Müthing J., Schauder B., Conradt P., Mühlradt P. F. An improved semi-quantitative enzyme immunostaining procedure for glycosphingolipid antigens on high performance thin layer chromatograms. J Immunol Methods. 1986 May 1;89(1):111–116. doi: 10.1016/0022-1759(86)90038-4. [DOI] [PubMed] [Google Scholar]
  4. Chen C., Colley K. J. Minimal structural and glycosylation requirements for ST6Gal I activity and trafficking. Glycobiology. 2000 May;10(5):531–583. doi: 10.1093/glycob/10.5.531. [DOI] [PubMed] [Google Scholar]
  5. Christensen L. L., Jensen U. B., Bross P., Orntoft T. F. The C-terminal N-glycosylation sites of the human alpha1,3/4-fucosyltransferase III, -V, and -VI (hFucTIII, -V, adn -VI) are necessary for the expression of full enzyme activity. Glycobiology. 2000 Sep;10(9):931–939. doi: 10.1093/glycob/10.9.931. [DOI] [PubMed] [Google Scholar]
  6. Eckhardt M., Barth H., Blöcker D., Aktories K. Binding of Clostridium botulinum C2 toxin to asparagine-linked complex and hybrid carbohydrates. J Biol Chem. 2000 Jan 28;275(4):2328–2334. doi: 10.1074/jbc.275.4.2328. [DOI] [PubMed] [Google Scholar]
  7. El-Fasakhany F. M., Uchimura K., Kannagi R., Muramatsu T. A novel human Gal-3-O-sulfotransferase: molecular cloning, characterization, and its implications in biosynthesis of (SO(4)-3)Galbeta1-4(Fucalpha1-3)GlcNAc. J Biol Chem. 2001 May 16;276(29):26988–26994. doi: 10.1074/jbc.M100348200. [DOI] [PubMed] [Google Scholar]
  8. Fast D. G., Jamieson J. C., McCaffrey G. The role of the carbohydrate chains of Gal beta-1,4-GlcNAc alpha 2,6-sialyltransferase for enzyme activity. Biochim Biophys Acta. 1993 Oct 6;1202(2):325–330. doi: 10.1016/0167-4838(93)90023-k. [DOI] [PubMed] [Google Scholar]
  9. Fredman P., Mattsson L., Andersson K., Davidsson P., Ishizuka I., Jeansson S., Månsson J. E., Svennerholm L. Characterization of the binding epitope of a monoclonal antibody to sulphatide. Biochem J. 1988 Apr 1;251(1):17–22. doi: 10.1042/bj2510017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fujimoto H., Tadano-Aritomi K., Tokumasu A., Ito K., Hikita T., Suzuki K., Ishizuka I. Requirement of seminolipid in spermatogenesis revealed by UDP-galactose: Ceramide galactosyltransferase-deficient mice. J Biol Chem. 2000 Jul 28;275(30):22623–22626. doi: 10.1074/jbc.C000200200. [DOI] [PubMed] [Google Scholar]
  11. Fukuda M., Hiraoka N., Akama T. O., Fukuda M. N. Carbohydrate-modifying sulfotransferases: structure, function, and pathophysiology. J Biol Chem. 2001 Oct 3;276(51):47747–47750. doi: 10.1074/jbc.R100049200. [DOI] [PubMed] [Google Scholar]
  12. Gottlieb C., Skinner A. M., Kornfeld S. Isolation of a clone of Chinese hamster ovary cells deficient in plant lectin-binding sites. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1078–1082. doi: 10.1073/pnas.71.4.1078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Haraguchi M., Yamashiro S., Furukawa K., Takamiya K., Shiku H., Furukawa K. The effects of the site-directed removal of N-glycosylation sites from beta-1,4-N-acetylgalactosaminyltransferase on its function. Biochem J. 1995 Nov 15;312(Pt 1):273–280. doi: 10.1042/bj3120273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hirahara Y., Tsuda M., Wada Y., Honke K. cDNA cloning, genomic cloning, and tissue-specific regulation of mouse cerebroside sulfotransferase. Eur J Biochem. 2000 Apr;267(7):1909–1917. doi: 10.1046/j.1432-1327.2000.01139.x. [DOI] [PubMed] [Google Scholar]
  15. Honke K., Tsuda M., Hirahara Y., Ishii A., Makita A., Wada Y. Molecular cloning and expression of cDNA encoding human 3'-phosphoadenylylsulfate:galactosylceramide 3'-sulfotransferase. J Biol Chem. 1997 Feb 21;272(8):4864–4868. doi: 10.1074/jbc.272.8.4864. [DOI] [PubMed] [Google Scholar]
  16. Honke K., Tsuda M., Koyota S., Wada Y., Iida-Tanaka N., Ishizuka I., Nakayama J., Taniguchi N. Molecular cloning and characterization of a human beta-Gal-3'-sulfotransferase that acts on both type 1 and type 2 (Gal beta 1-3/1-4GlcNAc-R) oligosaccharides. J Biol Chem. 2001 Jan 5;276(1):267–274. doi: 10.1074/jbc.M005666200. [DOI] [PubMed] [Google Scholar]
  17. Honke K., Yamane M., Ishii A., Kobayashi T., Makita A. Purification and characterization of 3'-phosphoadenosine-5'-phosphosulfate:GalCer sulfotransferase from human renal cancer cells. J Biochem. 1996 Mar;119(3):421–427. doi: 10.1093/oxfordjournals.jbchem.a021258. [DOI] [PubMed] [Google Scholar]
  18. Honke Koichi, Hirahara Yukie, Dupree Jeffrey, Suzuki Kinuko, Popko Brian, Fukushima Kikuro, Fukushima Junko, Nagasawa Takashi, Yoshida Nobuaki, Wada Yoshinao. Paranodal junction formation and spermatogenesis require sulfoglycolipids. Proc Natl Acad Sci U S A. 2002 Mar 26;99(7):4227–4232. doi: 10.1073/pnas.032068299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jungalwala F. B., Natowicz M. R., Chaturvedi P., Newburg D. S. Analysis of sulfatide and enzymes of sulfatide metabolism. Methods Enzymol. 2000;311:94–105. doi: 10.1016/s0076-6879(00)11070-5. [DOI] [PubMed] [Google Scholar]
  20. Kadowaki T., Tsukuba T., Bertenshaw G. P., Bond J. S. N-Linked oligosaccharides on the meprin A metalloprotease are important for secretion and enzymatic activity, but not for apical targeting. J Biol Chem. 2000 Aug 18;275(33):25577–25584. doi: 10.1074/jbc.M003521200. [DOI] [PubMed] [Google Scholar]
  21. Kakuta Y., Pedersen L. G., Pedersen L. C., Negishi M. Conserved structural motifs in the sulfotransferase family. Trends Biochem Sci. 1998 Apr;23(4):129–130. doi: 10.1016/s0968-0004(98)01182-7. [DOI] [PubMed] [Google Scholar]
  22. Lehrman M. A. Oligosaccharide-based information in endoplasmic reticulum quality control and other biological systems. J Biol Chem. 2001 Jan 26;276(12):8623–8626. doi: 10.1074/jbc.R100002200. [DOI] [PubMed] [Google Scholar]
  23. Martina J. A., Daniotti J. L., Maccioni H. J. Influence of N-glycosylation and N-glycan trimming on the activity and intracellular traffic of GD3 synthase. J Biol Chem. 1998 Feb 6;273(6):3725–3731. doi: 10.1074/jbc.273.6.3725. [DOI] [PubMed] [Google Scholar]
  24. Mehl E., Jatzkewitz H. Eine Cerebrosidsulfatase aus Schweineniere. Hoppe Seylers Z Physiol Chem. 1964;339(1):260–276. [PubMed] [Google Scholar]
  25. Moremen K. W., Touster O., Robbins P. W. Novel purification of the catalytic domain of Golgi alpha-mannosidase II. Characterization and comparison with the intact enzyme. J Biol Chem. 1991 Sep 5;266(25):16876–16885. [PubMed] [Google Scholar]
  26. Mühlenhoff M., Eckhardt M., Bethe A., Frosch M., Gerardy-Schahn R. Autocatalytic polysialylation of polysialyltransferase-1. EMBO J. 1996 Dec 16;15(24):6943–6950. [PMC free article] [PubMed] [Google Scholar]
  27. Mühlenhoff M., Manegold A., Windfuhr M., Gotza B., Gerardy-Schahn R. The impact of N-glycosylation on the functions of polysialyltransferases. J Biol Chem. 2001 Jun 19;276(36):34066–34073. doi: 10.1074/jbc.M101022200. [DOI] [PubMed] [Google Scholar]
  28. Nagai K., Ihara Y., Wada Y., Taniguchi N. N-glycosylation is requisite for the enzyme activity and Golgi retention of N-acetylglucosaminyltransferase III. Glycobiology. 1997 Sep;7(6):769–776. doi: 10.1093/glycob/7.6.769. [DOI] [PubMed] [Google Scholar]
  29. Rosner M. R., Hubbard S. C., Ivatt R. J., Robbins P. W. N-asparagine-linked oligosaccharides: biosynthesis of the lipid-linked oligosaccharides. Methods Enzymol. 1982;83:399–408. doi: 10.1016/0076-6879(82)83037-1. [DOI] [PubMed] [Google Scholar]
  30. Sanchez-Lopez R., Nicholson R., Gesnel M. C., Matrisian L. M., Breathnach R. Structure-function relationships in the collagenase family member transin. J Biol Chem. 1988 Aug 25;263(24):11892–11899. [PubMed] [Google Scholar]
  31. Schnaar R. L., Needham L. K. Thin-layer chromatography of glycosphingolipids. Methods Enzymol. 1994;230:371–389. doi: 10.1016/0076-6879(94)30025-9. [DOI] [PubMed] [Google Scholar]
  32. Seko A., Hara-Kuge S., Yamashita K. Molecular cloning and characterization of a novel human galactose 3-O-sulfotransferase that transfers sulfate to gal beta 1-->3galNAc residue in O-glycans. J Biol Chem. 2001 May 1;276(28):25697–25704. doi: 10.1074/jbc.M101558200. [DOI] [PubMed] [Google Scholar]
  33. Stein C., Gieselmann V., Kreysing J., Schmidt B., Pohlmann R., Waheed A., Meyer H. E., O'Brien J. S., von Figura K. Cloning and expression of human arylsulfatase A. J Biol Chem. 1989 Jan 15;264(2):1252–1259. [PubMed] [Google Scholar]
  34. Suzuki A., Hiraoka N., Suzuki M., Angata K., Misra A. K., McAuliffe J., Hindsgaul O., Fukuda M. Molecular cloning and expression of a novel human beta-Gal-3-O-sulfotransferase that acts preferentially on N-acetyllactosamine in N- and O-glycans. J Biol Chem. 2001 Apr 25;276(26):24388–24395. doi: 10.1074/jbc.M103135200. [DOI] [PubMed] [Google Scholar]
  35. Tifft C. J., Proia R. L. Stemming the tide: glycosphingolipid synthesis inhibitors as therapy for storage diseases. Glycobiology. 2000 Dec;10(12):1249–1258. doi: 10.1093/glycob/10.12.1249. [DOI] [PubMed] [Google Scholar]
  36. Toki D., Sarkar M., Yip B., Reck F., Joziasse D., Fukuda M., Schachter H., Brockhausen I. Expression of stable human O-glycan core 2 beta-1,6-N-acetylglucosaminyltransferase in Sf9 insect cells. Biochem J. 1997 Jul 1;325(Pt 1):63–69. doi: 10.1042/bj3250063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ueno K., Ishizuka I., Yamakawa T. Glycolipid composition of human testis at different ages and the stereochemical configuration of seminolipid. Biochim Biophys Acta. 1977 Apr 26;487(1):61–73. [PubMed] [Google Scholar]
  38. Varki A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology. 1993 Apr;3(2):97–130. doi: 10.1093/glycob/3.2.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Verhoeven A. J., Neve B. P., Jansen H. Secretion and apparent activation of human hepatic lipase requires proper oligosaccharide processing in the endoplasmic reticulum. Biochem J. 1999 Jan 1;337(Pt 1):133–140. [PMC free article] [PubMed] [Google Scholar]
  40. Yusuf H. K., Pohlentz G., Sandhoff K. Tunicamycin inhibits ganglioside biosynthesis in rat liver Golgi apparatus by blocking sugar nucleotide transport across the membrane vesicles. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7075–7079. doi: 10.1073/pnas.80.23.7075. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES