Abstract
The anion-exchange band 3 protein is the main erythrocyte protein that is phosphorylated by protein tyrosine kinase (PTK). We have previously identified a band 3-associated phosphotyrosine phosphatase (PTP) that is normally highly active and prevents the accumulation of band 3 phosphotyrosine. Band 3 tyrosine phosphorylation can be induced by inhibition of PTP (vanadate, thiol oxidation), activation of PTK (hypertonic NaCl) or intracellular increased Ca(2+) (mechanism unknown). We now show that there is inhibition of dephosphorylation of band 3 in Ca(2+)/ionophore-treated erythrocytes and in membranes isolated from the treated cells. These membranes exhibit phosphatase activity upon the addition of exogenous substrate. Dephosphorylation of the endogenous substrate (band 3) can be activated in these membranes by the addition of Mg(2+). Thus the inability of PTP to dephosphorylate the band 3 phosphotyrosine is not due to inhibition of the enzyme itself. Ca(2+) rise in the erythrocyte causes dissociation of PTP from band 3, thus leaving the kinase unopposed. This is shown by a significant diminution in band 3/PTP co-precipitation. Addition of Mg(2+) to these membranes leads to reassociation of band 3 with PTP. The Ca(2+)-induced inhibition of band 3 dephosphorylation may be due to Ca(2+)-dependent alterations in membrane components and structure, affecting the interaction of band 3 with PTP. The Ca(2+)-induced tyrosine phosphorylation, involving an apparent PTP inhibition via dissociation from the substrate, may play a role in signal transduction pathways and in certain pathological disorders associated with increased cell Ca(2+).
Full Text
The Full Text of this article is available as a PDF (261.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allan D., Michell R. H. Accumulation of 1,2-diacylglycerol in the plasma membrane may lead to echinocyte transformation of erythrocytes. Nature. 1975 Nov 27;258(5533):348–349. doi: 10.1038/258348a0. [DOI] [PubMed] [Google Scholar]
- Allan D., Thomas P. Ca2+-induced biochemical changes in human erythrocytes and their relation to microvesiculation. Biochem J. 1981 Sep 15;198(3):433–440. doi: 10.1042/bj1980433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Asaoka Y., Nakamura S., Yoshida K., Nishizuka Y. Protein kinase C, calcium and phospholipid degradation. Trends Biochem Sci. 1992 Oct;17(10):414–417. doi: 10.1016/0968-0004(92)90011-w. [DOI] [PubMed] [Google Scholar]
- Barbul A., Zipser Y., Nachles A., Korenstein R. Deoxygenation and elevation of intracellular magnesium induce tyrosine phosphorylation of band 3 in human erythrocytes. FEBS Lett. 1999 Jul 16;455(1-2):87–91. doi: 10.1016/s0014-5793(99)00822-4. [DOI] [PubMed] [Google Scholar]
- Boivin P., Galand C., Bertrand O. Protein band 3 phosphotyrosyl phosphatase. Purification and characterization. Int J Biochem. 1987;19(7):613–618. doi: 10.1016/0020-711x(87)90227-8. [DOI] [PubMed] [Google Scholar]
- Borowski P., Heiland M., Kornetzky L., Medem S., Laufs R. Purification of catalytic domain of rat spleen p72syk kinase and its phosphorylation and activation by protein kinase C. Biochem J. 1998 Apr 15;331(Pt 2):649–657. doi: 10.1042/bj3310649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brunati A. M., Bordin L., Clari G., James P., Quadroni M., Baritono E., Pinna L. A., Donella-Deana A. Sequential phosphorylation of protein band 3 by Syk and Lyn tyrosine kinases in intact human erythrocytes: identification of primary and secondary phosphorylation sites. Blood. 2000 Aug 15;96(4):1550–1557. [PubMed] [Google Scholar]
- Brunati A. M., Bordin L., Clari G., Moret V. The Lyn-catalyzed Tyr phosphorylation of the transmembrane band-3 protein of human erythrocytes. Eur J Biochem. 1996 Sep 1;240(2):394–399. doi: 10.1111/j.1432-1033.1996.0394h.x. [DOI] [PubMed] [Google Scholar]
- Chernoff J. Protein tyrosine phosphatases as negative regulators of mitogenic signaling. J Cell Physiol. 1999 Aug;180(2):173–181. doi: 10.1002/(SICI)1097-4652(199908)180:2<173::AID-JCP5>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
- Cohen C. M., Gascard P. Regulation and post-translational modification of erythrocyte membrane and membrane-skeletal proteins. Semin Hematol. 1992 Oct;29(4):244–292. [PubMed] [Google Scholar]
- Dekkers D. W., Comfurius P., Vuist W. M., Billheimer J. T., Dicker I., Weiss H. J., Zwaal R. F., Bevers E. M. Impaired Ca2+-induced tyrosine phosphorylation and defective lipid scrambling in erythrocytes from a patient with Scott syndrome: a study using an inhibitor for scramblase that mimics the defect in Scott syndrome. Blood. 1998 Mar 15;91(6):2133–2138. [PubMed] [Google Scholar]
- Elchebly M., Payette P., Michaliszyn E., Cromlish W., Collins S., Loy A. L., Normandin D., Cheng A., Himms-Hagen J., Chan C. C. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science. 1999 Mar 5;283(5407):1544–1548. doi: 10.1126/science.283.5407.1544. [DOI] [PubMed] [Google Scholar]
- Fathallah H., Sauvage M., Romero J. R., Canessa M., Giraud F. Effects of PKC alpha activation on Ca2+ pump and K(Ca) channel in deoxygenated sickle cells. Am J Physiol. 1997 Oct;273(4 Pt 1):C1206–C1214. doi: 10.1152/ajpcell.1997.273.4.C1206. [DOI] [PubMed] [Google Scholar]
- Figueiredo-Pereira M. E., Banik N., Wilk S. Comparison of the effect of calpain inhibitors on two extralysosomal proteinases: the multicatalytic proteinase complex and m-calpain. J Neurochem. 1994 May;62(5):1989–1994. doi: 10.1046/j.1471-4159.1994.62051989.x. [DOI] [PubMed] [Google Scholar]
- Flint A. J., Gebbink M. F., Franza B. R., Jr, Hill D. E., Tonks N. K. Multi-site phosphorylation of the protein tyrosine phosphatase, PTP1B: identification of cell cycle regulated and phorbol ester stimulated sites of phosphorylation. EMBO J. 1993 May;12(5):1937–1946. doi: 10.1002/j.1460-2075.1993.tb05843.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frangioni J. V., Oda A., Smith M., Salzman E. W., Neel B. G. Calpain-catalyzed cleavage and subcellular relocation of protein phosphotyrosine phosphatase 1B (PTP-1B) in human platelets. EMBO J. 1993 Dec;12(12):4843–4856. doi: 10.1002/j.1460-2075.1993.tb06174.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garton A. J., Tonks N. K. PTP-PEST: a protein tyrosine phosphatase regulated by serine phosphorylation. EMBO J. 1994 Aug 15;13(16):3763–3771. doi: 10.1002/j.1460-2075.1994.tb06687.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glaser T., Schwarz-Benmeir N., Barnoy S., Barak S., Eshhar Z., Kosower N. S. Calpain (Ca(2+)-dependent thiol protease) in erythrocytes of young and old individuals. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):7879–7883. doi: 10.1073/pnas.91.17.7879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gross S., Knebel A., Tenev T., Neininger A., Gaestel M., Herrlich P., Böhmer F. D. Inactivation of protein-tyrosine phosphatases as mechanism of UV-induced signal transduction. J Biol Chem. 1999 Sep 10;274(37):26378–26386. doi: 10.1074/jbc.274.37.26378. [DOI] [PubMed] [Google Scholar]
- Harrison M. L., Isaacson C. C., Burg D. L., Geahlen R. L., Low P. S. Phosphorylation of human erythrocyte band 3 by endogenous p72syk. J Biol Chem. 1994 Jan 14;269(2):955–959. [PubMed] [Google Scholar]
- Hunter T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell. 1995 Jan 27;80(2):225–236. doi: 10.1016/0092-8674(95)90405-0. [DOI] [PubMed] [Google Scholar]
- Kansha M., Takeshige K., Minakami S. Decrease in the phosphotyrosine phosphatase activity in the plasma membrane of human neutrophils on stimulation by phorbol 12-myristate 13-acetate. Biochim Biophys Acta. 1993 Nov 7;1179(2):189–196. doi: 10.1016/0167-4889(93)90140-k. [DOI] [PubMed] [Google Scholar]
- Katoh S., Funayama A., Kohno H., Ohkubo Y. Dephosphorylation on tyrosine of epidermal growth factor receptor is inhibited by Ca2+ pretreatment in isolated liver membrane. Arch Biochem Biophys. 1993 Nov 15;307(1):52–56. doi: 10.1006/abbi.1993.1559. [DOI] [PubMed] [Google Scholar]
- LaMontagne K. R., Jr, Hannon G., Tonks N. K. Protein tyrosine phosphatase PTP1B suppresses p210 bcr-abl-induced transformation of rat-1 fibroblasts and promotes differentiation of K562 cells. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14094–14099. doi: 10.1073/pnas.95.24.14094. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee S. R., Kwon K. S., Kim S. R., Rhee S. G. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem. 1998 Jun 19;273(25):15366–15372. doi: 10.1074/jbc.273.25.15366. [DOI] [PubMed] [Google Scholar]
- Melloni E., Pontremoli S., Michetti M., Sacco O., Sparatore B., Salamino F., Horecker B. L. Binding of protein kinase C to neutrophil membranes in the presence of Ca2+ and its activation by a Ca2+-requiring proteinase. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6435–6439. doi: 10.1073/pnas.82.19.6435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merciris P., Hardy-Dessources M. D., Giraud F. Deoxygenation of sickle cells stimulates Syk tyrosine kinase and inhibits a membrane tyrosine phosphatase. Blood. 2001 Nov 15;98(10):3121–3127. doi: 10.1182/blood.v98.10.3121. [DOI] [PubMed] [Google Scholar]
- Minetti G., Piccinini G., Balduini C., Seppi C., Brovelli A. Tyrosine phosphorylation of band 3 protein in Ca2+/A23187-treated human erythrocytes. Biochem J. 1996 Dec 1;320(Pt 2):445–450. doi: 10.1042/bj3200445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minetti G., Seppi C., Ciana A., Balduini C., Low P. S., Brovelli A. Characterization of the hypertonically induced tyrosine phosphorylation of erythrocyte band 3. Biochem J. 1998 Oct 15;335(Pt 2):305–311. doi: 10.1042/bj3350305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Molinari M., Carafoli E. Calpain: a cytosolic proteinase active at the membranes. J Membr Biol. 1997 Mar 1;156(1):1–8. doi: 10.1007/s002329900181. [DOI] [PubMed] [Google Scholar]
- Musch M. W., Hubert E. M., Goldstein L. Volume expansion stimulates p72(syk) and p56(lyn) in skate erythrocytes. J Biol Chem. 1999 Mar 19;274(12):7923–7928. doi: 10.1074/jbc.274.12.7923. [DOI] [PubMed] [Google Scholar]
- Ostman A., Böhmer F. D. Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatases. Trends Cell Biol. 2001 Jun;11(6):258–266. doi: 10.1016/s0962-8924(01)01990-0. [DOI] [PubMed] [Google Scholar]
- Petryniak M. A., Wurtman R. J., Slack B. E. Elevated intracellular calcium concentration increases secretory processing of the amyloid precursor protein by a tyrosine phosphorylation-dependent mechanism. Biochem J. 1996 Dec 15;320(Pt 3):957–963. doi: 10.1042/bj3200957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saido T. C., Sorimachi H., Suzuki K. Calpain: new perspectives in molecular diversity and physiological-pathological involvement. FASEB J. 1994 Aug;8(11):814–822. [PubMed] [Google Scholar]
- Sun H., Tonks N. K. The coordinated action of protein tyrosine phosphatases and kinases in cell signaling. Trends Biochem Sci. 1994 Nov;19(11):480–485. doi: 10.1016/0968-0004(94)90134-1. [DOI] [PubMed] [Google Scholar]
- Terra H. T., Saad M. J., Carvalho C. R., Vicentin D. L., Costa F. F., Saad S. T. Increased tyrosine phosphorylation of band 3 in hemoglobinopathies. Am J Hematol. 1998 Jul;58(3):224–230. doi: 10.1002/(sici)1096-8652(199807)58:3<224::aid-ajh11>3.0.co;2-9. [DOI] [PubMed] [Google Scholar]
- Tomic S., Greiser U., Lammers R., Kharitonenkov A., Imyanitov E., Ullrich A., Böhmer F. D. Association of SH2 domain protein tyrosine phosphatases with the epidermal growth factor receptor in human tumor cells. Phosphatidic acid activates receptor dephosphorylation by PTP1C. J Biol Chem. 1995 Sep 8;270(36):21277–21284. doi: 10.1074/jbc.270.36.21277. [DOI] [PubMed] [Google Scholar]
- Toullec D., Pianetti P., Coste H., Bellevergue P., Grand-Perret T., Ajakane M., Baudet V., Boissin P., Boursier E., Loriolle F. The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem. 1991 Aug 25;266(24):15771–15781. [PubMed] [Google Scholar]
- Vostal J. G., Shulman N. R. Vinculin is a major platelet protein that undergoes Ca(2+)-dependent tyrosine phosphorylation. Biochem J. 1993 Sep 15;294(Pt 3):675–680. doi: 10.1042/bj2940675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walton K. M., Dixon J. E. Protein tyrosine phosphatases. Annu Rev Biochem. 1993;62:101–120. doi: 10.1146/annurev.bi.62.070193.000533. [DOI] [PubMed] [Google Scholar]
- Wo Y. Y., McCormack A. L., Shabanowitz J., Hunt D. F., Davis J. P., Mitchell G. L., Van Etten R. L. Sequencing, cloning, and expression of human red cell-type acid phosphatase, a cytoplasmic phosphotyrosyl protein phosphatase. J Biol Chem. 1992 May 25;267(15):10856–10865. [PubMed] [Google Scholar]
- Yannoukakos D., Vasseur C., Piau J. P., Wajcman H., Bursaux E. Phosphorylation sites in human erythrocyte band 3 protein. Biochim Biophys Acta. 1991 Jan 30;1061(2):253–266. doi: 10.1016/0005-2736(91)90291-f. [DOI] [PubMed] [Google Scholar]
- Zipser Y., Kosower N. S. Phosphotyrosine phosphatase associated with band 3 protein in the human erythrocyte membrane. Biochem J. 1996 Mar 15;314(Pt 3):881–887. doi: 10.1042/bj3140881. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zipser Y., Piade A., Kosower N. S. Erythrocyte thiol status regulates band 3 phosphotyrosine level via oxidation/reduction of band 3-associated phosphotyrosine phosphatase. FEBS Lett. 1997 Apr 7;406(1-2):126–130. doi: 10.1016/s0014-5793(97)00263-9. [DOI] [PubMed] [Google Scholar]