Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Nov 15;368(Pt 1):309–316. doi: 10.1042/BJ20021070

Diverse effects of two allosteric inhibitors on the phosphorylation state of glycogen phosphorylase in hepatocytes.

Theodore Latsis 1, Birgitte Andersen 1, Loranne Agius 1
PMCID: PMC1222981  PMID: 12186629

Abstract

Two distinct allosteric inhibitors of glycogen phosphorylase, 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) and CP-91149 (an indole-2-carboxamide), were investigated for their effects on the phosphorylation state of the enzyme in hepatocytes in vitro. CP-91149 induced inactivation (dephosphorylation) of phosphorylase in the absence of hormones and partially counteracted the phosphorylation caused by glucagon. Inhibition of glycogenolysis by CP-91149 can be explained by dephosphorylation of phosphorylase a. This was associated with activation of glycogen synthase and stimulation of glycogen synthesis. DAB, in contrast, induced a small degree of phosphorylation of phosphorylase. This was associated with inactivation of glycogen synthase and inhibition of glycogen synthesis. Despite causing phosphorylation (activation) of phosphorylase, DAB is a very potent inhibitor of glycogenolysis in both the absence and presence of glucagon. This is explained by allosteric inhibition of phosphorylase a, which overrides the increase in activation state. In conclusion, two potent phosphorylase inhibitors exert different effects on glycogen metabolism in intact hepatocytes as a result of opposite effects on the phosphorylation state of both phosphorylase and glycogen synthase.

Full Text

The Full Text of this article is available as a PDF (181.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agius L. Involvement of glucokinase translocation in the mechanism by which resorcinol inhibits glycolysis in hepatocytes. Biochem J. 1997 Aug 1;325(Pt 3):667–673. doi: 10.1042/bj3250667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Agius L., Peak M., Alberti K. G. Regulation of glycogen synthesis from glucose and gluconeogenic precursors by insulin in periportal and perivenous rat hepatocytes. Biochem J. 1990 Feb 15;266(1):91–102. doi: 10.1042/bj2660091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aiston S., Agius L. Leptin enhances glycogen storage in hepatocytes by inhibition of phosphorylase and exerts an additive effect with insulin. Diabetes. 1999 Jan;48(1):15–20. doi: 10.2337/diabetes.48.1.15. [DOI] [PubMed] [Google Scholar]
  4. Aiston S., Hampson L., Gómez-Foix A. M., Guinovart J. J., Agius L. Hepatic glycogen synthesis is highly sensitive to phosphorylase activity: evidence from metabolic control analysis. J Biol Chem. 2001 Apr 17;276(26):23858–23866. doi: 10.1074/jbc.M101454200. [DOI] [PubMed] [Google Scholar]
  5. Andersen B., Rassov A., Westergaard N., Lundgren K. Inhibition of glycogenolysis in primary rat hepatocytes by 1, 4-dideoxy-1,4-imino-D-arabinitol. Biochem J. 1999 Sep 15;342(Pt 3):545–550. [PMC free article] [PubMed] [Google Scholar]
  6. Bergans N., Stalmans W., Goldmann S., Vanstapel F. Molecular mode of inhibition of glycogenolysis in rat liver by the dihydropyridine derivative, BAY R3401: inhibition and inactivation of glycogen phosphorylase by an activated metabolite. Diabetes. 2000 Sep;49(9):1419–1426. doi: 10.2337/diabetes.49.9.1419. [DOI] [PubMed] [Google Scholar]
  7. Bollen M., Keppens S., Stalmans W. Specific features of glycogen metabolism in the liver. Biochem J. 1998 Nov 15;336(Pt 1):19–31. doi: 10.1042/bj3360019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fosgerau K., Westergaard N., Quistorff B., Grunnet N., Kristiansen M., Lundgren K. Kinetic and functional characterization of 1,4-dideoxy-1, 4-imino-d-arabinitol: a potent inhibitor of glycogen phosphorylase with anti-hyperglyceamic effect in ob/ob mice. Arch Biochem Biophys. 2000 Aug 15;380(2):274–284. doi: 10.1006/abbi.2000.1930. [DOI] [PubMed] [Google Scholar]
  9. Fosgerau Keld, Breinholt Jens, McCormack James G., Westergaard Niels. Evidence against glycogen cycling of gluconeogenic substrates in various liver preparations. J Biol Chem. 2002 May 31;277(32):28648–28655. doi: 10.1074/jbc.M201565200. [DOI] [PubMed] [Google Scholar]
  10. Grunnet N., Jensen S., Dich J. Absence of glycogen cycling in cultured rat hepatocytes. Arch Biochem Biophys. 1994 Feb 15;309(1):18–23. doi: 10.1006/abbi.1994.1077. [DOI] [PubMed] [Google Scholar]
  11. Gustafson L. A., Neeft M., Reijngoud D. J., Kuipers F., Sauerwein H. P., Romijn J. A., Herling A. W., Burger H. J., Meijer A. J. Fatty acid and amino acid modulation of glucose cycling in isolated rat hepatocytes. Biochem J. 2001 Sep 15;358(Pt 3):665–671. doi: 10.1042/0264-6021:3580665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hoover D. J., Lefkowitz-Snow S., Burgess-Henry J. L., Martin W. H., Armento S. J., Stock I. A., McPherson R. K., Genereux P. E., Gibbs E. M., Treadway J. L. Indole-2-carboxamide inhibitors of human liver glycogen phosphorylase. J Med Chem. 1998 Jul 30;41(16):2934–2938. doi: 10.1021/jm980264k. [DOI] [PubMed] [Google Scholar]
  13. Hundal R. S., Krssak M., Dufour S., Laurent D., Lebon V., Chandramouli V., Inzucchi S. E., Schumann W. C., Petersen K. F., Landau B. R. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes. 2000 Dec;49(12):2063–2069. doi: 10.2337/diabetes.49.12.2063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kasvinsky P. J., Fletterick R. J., Madsen N. B. Regulation of the dephosphorylation of glycogen phosphorylase a and synthase b by glucose and caffeine in isolated hepatocytes. Can J Biochem. 1981 Jun;59(6):387–395. doi: 10.1139/o81-054. [DOI] [PubMed] [Google Scholar]
  15. Kasvinsky P. J., Shechosky S., Fletterick R. J. Synergistic regulation of phosphorylase a by glucose and caffeine. J Biol Chem. 1978 Dec 25;253(24):9102–9106. [PubMed] [Google Scholar]
  16. Landau B. R. Methods for measuring glycogen cycling. Am J Physiol Endocrinol Metab. 2001 Sep;281(3):E413–E419. doi: 10.1152/ajpendo.2001.281.3.E413. [DOI] [PubMed] [Google Scholar]
  17. Martin W. H., Hoover D. J., Armento S. J., Stock I. A., McPherson R. K., Danley D. E., Stevenson R. W., Barrett E. J., Treadway J. L. Discovery of a human liver glycogen phosphorylase inhibitor that lowers blood glucose in vivo. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1776–1781. doi: 10.1073/pnas.95.4.1776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Massillon D., Bollen M., De Wulf H., Overloop K., Vanstapel F., Van Hecke P., Stalmans W. Demonstration of a glycogen/glucose 1-phosphate cycle in hepatocytes from fasted rats. Selective inactivation of phosphorylase by 2-deoxy-2-fluoro-alpha-D-glucopyranosyl fluoride. J Biol Chem. 1995 Aug 18;270(33):19351–19356. doi: 10.1074/jbc.270.33.19351. [DOI] [PubMed] [Google Scholar]
  19. Munro Shonagh, Cuthbertson Daniel J. R., Cunningham Joan, Sales Mark, Cohen Patricia T. W. Human skeletal muscle expresses a glycogen-targeting subunit of PP1 that is identical to the insulin-sensitive glycogen-targeting subunit G(L) of liver. Diabetes. 2002 Mar;51(3):591–598. doi: 10.2337/diabetes.51.3.591. [DOI] [PubMed] [Google Scholar]
  20. Newgard C. B., Hwang P. K., Fletterick R. J. The family of glycogen phosphorylases: structure and function. Crit Rev Biochem Mol Biol. 1989;24(1):69–99. doi: 10.3109/10409238909082552. [DOI] [PubMed] [Google Scholar]
  21. Rath V. L., Ammirati M., Danley D. E., Ekstrom J. L., Gibbs E. M., Hynes T. R., Mathiowetz A. M., McPherson R. K., Olson T. V., Treadway J. L. Human liver glycogen phosphorylase inhibitors bind at a new allosteric site. Chem Biol. 2000 Sep;7(9):677–682. doi: 10.1016/s1074-5521(00)00004-1. [DOI] [PubMed] [Google Scholar]
  22. Rath V. L., Ammirati M., LeMotte P. K., Fennell K. F., Mansour M. N., Danley D. E., Hynes T. R., Schulte G. K., Wasilko D. J., Pandit J. Activation of human liver glycogen phosphorylase by alteration of the secondary structure and packing of the catalytic core. Mol Cell. 2000 Jul;6(1):139–148. [PubMed] [Google Scholar]
  23. Shiota M., Jackson P. A., Bischoff H., McCaleb M., Scott M., Monohan M., Neal D. W., Cherrington A. D. Inhibition of glycogenolysis enhances gluconeogenic precursor uptake by the liver of conscious dogs. Am J Physiol. 1997 Nov;273(5 Pt 1):E868–E879. doi: 10.1152/ajpendo.1997.273.5.E868. [DOI] [PubMed] [Google Scholar]
  24. Stalmans W., Gevers G. The catalytic activity of phosphorylase b in the liver. With a note on the assay in the glycogenolytic direction. Biochem J. 1981 Nov 15;200(2):327–336. doi: 10.1042/bj2000327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tappy L. Regulation of hepatic glucose production in healthy subjects and patients with non-insulin-dependent diabetes mellitus. Diabete Metab. 1995 Oct;21(4):233–240. [PubMed] [Google Scholar]
  26. Thomas J. A., Schlender K. K., Larner J. A rapid filter paper assay for UDPglucose-glycogen glucosyltransferase, including an improved biosynthesis of UDP-14C-glucose. Anal Biochem. 1968 Oct 24;25(1):486–499. doi: 10.1016/0003-2697(68)90127-9. [DOI] [PubMed] [Google Scholar]
  27. Treadway J. L., Mendys P., Hoover D. J. Glycogen phosphorylase inhibitors for treatment of type 2 diabetes mellitus. Expert Opin Investig Drugs. 2001 Mar;10(3):439–454. doi: 10.1517/13543784.10.3.439. [DOI] [PubMed] [Google Scholar]
  28. Villar-Palasí C., Guinovart J. J. The role of glucose 6-phosphate in the control of glycogen synthase. FASEB J. 1997 Jun;11(7):544–558. [PubMed] [Google Scholar]
  29. Zographos S. E., Oikonomakos N. G., Tsitsanou K. E., Leonidas D. D., Chrysina E. D., Skamnaki V. T., Bischoff H., Goldmann S., Watson K. A., Johnson L. N. The structure of glycogen phosphorylase b with an alkyldihydropyridine-dicarboxylic acid compound, a novel and potent inhibitor. Structure. 1997 Nov 15;5(11):1413–1425. doi: 10.1016/s0969-2126(97)00292-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES