Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Nov 15;368(Pt 1):81–90. doi: 10.1042/BJ20020773

Cell-surface prion protein interacts with glycosaminoglycans.

Tao Pan 1, Boon-Seng Wong 1, Tong Liu 1, Ruliang Li 1, Robert B Petersen 1, Man-Sun Sy 1
PMCID: PMC1222984  PMID: 12186633

Abstract

We used ELISA and flow cytometry to study the binding of prion protein PrP to glycosaminoglycans (GAGs). We found that recombinant human PrP (rPrP) binds GAGs including chondroitin sulphate A, chondroitin sulphate B, hyaluronic acid, and heparin. rPrP binding to GAGs occurs via the N-terminus, a region known to bind divalent cations. Additionally, rPrP binding to GAGs is enhanced in the presence of Cu2+ and Zn2+, but not Ca2+ and Mn2+. rPrP binds heparin strongest, and the binding is inhibited by certain heparin analogues, including heparin disaccharide and sulphate-containing monosaccharides, but not by acetylated heparin. Full-length normal cellular prion protein (PrPC), but not N-terminally truncated PrPC species, from human brain bind GAGs in a similar Cu2+/Zn2+-enhanced fashion. We found that GAGs specifically bind to a synthetic peptide corresponding to amino acid residues 23-35 in the N-terminus of rPrP. We further demonstrated that while both wild-type PrPC and an octapeptide-repeat-deleted mutant PrP produced by transfected cells bound heparin at the cell surface, the PrP N-terminal deletion mutant and non-transfectant control failed to bind heparin. Binding of heparin to wild-type PrPC on the cell surface results in a reduction of the level of cell-surface PrPC. These results provide strong evidence that PrPC is a surface receptor for GAGs.

Full Text

The Full Text of this article is available as a PDF (288.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brimacombe D. B., Bennett A. D., Wusteman F. S., Gill A. C., Dann J. C., Bostock C. J. Characterization and polyanion-binding properties of purified recombinant prion protein. Biochem J. 1999 Sep 15;342(Pt 3):605–613. [PMC free article] [PubMed] [Google Scholar]
  2. Brown D. R., Besinger A. Prion protein expression and superoxide dismutase activity. Biochem J. 1998 Sep 1;334(Pt 2):423–429. doi: 10.1042/bj3340423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Caughey B. W., Dong A., Bhat K. S., Ernst D., Hayes S. F., Caughey W. S. Secondary structure analysis of the scrapie-associated protein PrP 27-30 in water by infrared spectroscopy. Biochemistry. 1991 Aug 6;30(31):7672–7680. doi: 10.1021/bi00245a003. [DOI] [PubMed] [Google Scholar]
  4. Caughey B., Brown K., Raymond G. J., Katzenstein G. E., Thresher W. Binding of the protease-sensitive form of PrP (prion protein) to sulfated glycosaminoglycan and congo red [corrected]. J Virol. 1994 Apr;68(4):2135–2141. doi: 10.1128/jvi.68.4.2135-2141.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Caughey B. Scrapie associated PrP accumulation and its prevention: insights from cell culture. Br Med Bull. 1993 Oct;49(4):860–872. doi: 10.1093/oxfordjournals.bmb.a072651. [DOI] [PubMed] [Google Scholar]
  6. Caughey B. Scrapie-associated PrP accumulation and agent replication: effects of sulphated glycosaminoglycan analogues. Philos Trans R Soc Lond B Biol Sci. 1994 Mar 29;343(1306):399–404. doi: 10.1098/rstb.1994.0035. [DOI] [PubMed] [Google Scholar]
  7. Chen S. G., Teplow D. B., Parchi P., Teller J. K., Gambetti P., Autilio-Gambetti L. Truncated forms of the human prion protein in normal brain and in prion diseases. J Biol Chem. 1995 Aug 11;270(32):19173–19180. doi: 10.1074/jbc.270.32.19173. [DOI] [PubMed] [Google Scholar]
  8. Collinge J., Whittington M. A., Sidle K. C., Smith C. J., Palmer M. S., Clarke A. R., Jefferys J. G. Prion protein is necessary for normal synaptic function. Nature. 1994 Jul 28;370(6487):295–297. doi: 10.1038/370295a0. [DOI] [PubMed] [Google Scholar]
  9. Donne D. G., Viles J. H., Groth D., Mehlhorn I., James T. L., Cohen F. E., Prusiner S. B., Wright P. E., Dyson H. J. Structure of the recombinant full-length hamster prion protein PrP(29-231): the N terminus is highly flexible. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13452–13457. doi: 10.1073/pnas.94.25.13452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ehlers B., Diringer H. Dextran sulphate 500 delays and prevents mouse scrapie by impairment of agent replication in spleen. J Gen Virol. 1984 Aug;65(Pt 8):1325–1330. doi: 10.1099/0022-1317-65-8-1325. [DOI] [PubMed] [Google Scholar]
  11. Gabus C., Auxilien S., Péchoux C., Dormont D., Swietnicki W., Morillas M., Surewicz W., Nandi P., Darlix J. L. The prion protein has DNA strand transfer properties similar to retroviral nucleocapsid protein. J Mol Biol. 2001 Apr 6;307(4):1011–1021. doi: 10.1006/jmbi.2001.4544. [DOI] [PubMed] [Google Scholar]
  12. Gabus C., Derrington E., Leblanc P., Chnaiderman J., Dormont D., Swietnicki W., Morillas M., Surewicz W. K., Marc D., Nandi P. The prion protein has RNA binding and chaperoning properties characteristic of nucleocapsid protein NCP7 of HIV-1. J Biol Chem. 2001 Feb 27;276(22):19301–19309. doi: 10.1074/jbc.M009754200. [DOI] [PubMed] [Google Scholar]
  13. Hornshaw M. P., McDermott J. R., Candy J. M., Lakey J. H. Copper binding to the N-terminal tandem repeat region of mammalian and avian prion protein: structural studies using synthetic peptides. Biochem Biophys Res Commun. 1995 Sep 25;214(3):993–999. doi: 10.1006/bbrc.1995.2384. [DOI] [PubMed] [Google Scholar]
  14. Hundt C., Peyrin J. M., Haïk S., Gauczynski S., Leucht C., Rieger R., Riley M. L., Deslys J. P., Dormont D., Lasmézas C. I. Identification of interaction domains of the prion protein with its 37-kDa/67-kDa laminin receptor. EMBO J. 2001 Nov 1;20(21):5876–5886. doi: 10.1093/emboj/20.21.5876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jackson G. S., Murray I., Hosszu L. L., Gibbs N., Waltho J. P., Clarke A. R., Collinge J. Location and properties of metal-binding sites on the human prion protein. Proc Natl Acad Sci U S A. 2001 Jul 3;98(15):8531–8535. doi: 10.1073/pnas.151038498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kimberlin R. H., Walker C. A. Suppression of scrapie infection in mice by heteropolyanion 23, dextran sulfate, and some other polyanions. Antimicrob Agents Chemother. 1986 Sep;30(3):409–413. doi: 10.1128/aac.30.3.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Li R., Liu D., Zanusso G., Liu T., Fayen J. D., Huang J. H., Petersen R. B., Gambetti P., Sy M. S. The expression and potential function of cellular prion protein in human lymphocytes. Cell Immunol. 2001 Jan 10;207(1):49–58. doi: 10.1006/cimm.2000.1751. [DOI] [PubMed] [Google Scholar]
  18. Li R., Liu T., Wong B. S., Pan T., Morillas M., Swietnicki W., O'Rourke K., Gambetti P., Surewicz W. K., Sy M. S. Identification of an epitope in the C terminus of normal prion protein whose expression is modulated by binding events in the N terminus. J Mol Biol. 2000 Aug 18;301(3):567–573. doi: 10.1006/jmbi.2000.3986. [DOI] [PubMed] [Google Scholar]
  19. Liu D., Sy M. S. A cysteine residue located in the transmembrane domain of CD44 is important in binding of CD44 to hyaluronic acid. J Exp Med. 1996 May 1;183(5):1987–1994. doi: 10.1084/jem.183.5.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Liu H., Farr-Jones S., Ulyanov N. B., Llinas M., Marqusee S., Groth D., Cohen F. E., Prusiner S. B., James T. L. Solution structure of Syrian hamster prion protein rPrP(90-231). Biochemistry. 1999 Apr 27;38(17):5362–5377. doi: 10.1021/bi982878x. [DOI] [PubMed] [Google Scholar]
  21. Lledo P. M., Tremblay P., DeArmond S. J., Prusiner S. B., Nicoll R. A. Mice deficient for prion protein exhibit normal neuronal excitability and synaptic transmission in the hippocampus. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2403–2407. doi: 10.1073/pnas.93.6.2403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Maissen M., Roeckl C., Glatzel M., Goldmann W., Aguzzi A. Plasminogen binds to disease-associated prion protein of multiple species. Lancet. 2001 Jun 23;357(9273):2026–2028. doi: 10.1016/S0140-6736(00)05110-2. [DOI] [PubMed] [Google Scholar]
  23. Martins V. R., Mercadante A. F., Cabral A. L., Freitas A. R., Castro R. M. Insights into the physiological function of cellular prion protein. Braz J Med Biol Res. 2001 May;34(5):585–595. doi: 10.1590/s0100-879x2001000500005. [DOI] [PubMed] [Google Scholar]
  24. Miura T., Hori-i A., Mototani H., Takeuchi H. Raman spectroscopic study on the copper(II) binding mode of prion octapeptide and its pH dependence. Biochemistry. 1999 Aug 31;38(35):11560–11569. doi: 10.1021/bi9909389. [DOI] [PubMed] [Google Scholar]
  25. Morillas M., Swietnicki W., Gambetti P., Surewicz W. K. Membrane environment alters the conformational structure of the recombinant human prion protein. J Biol Chem. 1999 Dec 24;274(52):36859–36865. doi: 10.1074/jbc.274.52.36859. [DOI] [PubMed] [Google Scholar]
  26. Mouillet-Richard S., Ermonval M., Chebassier C., Laplanche J. L., Lehmann S., Launay J. M., Kellermann O. Signal transduction through prion protein. Science. 2000 Sep 15;289(5486):1925–1928. doi: 10.1126/science.289.5486.1925. [DOI] [PubMed] [Google Scholar]
  27. Oesch B., Westaway D., Wälchli M., McKinley M. P., Kent S. B., Aebersold R., Barry R. A., Tempst P., Teplow D. B., Hood L. E. A cellular gene encodes scrapie PrP 27-30 protein. Cell. 1985 Apr;40(4):735–746. doi: 10.1016/0092-8674(85)90333-2. [DOI] [PubMed] [Google Scholar]
  28. Pan K. M., Baldwin M., Nguyen J., Gasset M., Serban A., Groth D., Mehlhorn I., Huang Z., Fletterick R. J., Cohen F. E. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10962–10966. doi: 10.1073/pnas.90.23.10962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pan T., Colucci M., Wong B. S., Li R., Liu T., Petersen R. B., Chen S., Gambetti P., Sy M. S. Novel differences between two human prion strains revealed by two-dimensional gel electrophoresis. J Biol Chem. 2001 Aug 6;276(40):37284–37288. doi: 10.1074/jbc.M107358200. [DOI] [PubMed] [Google Scholar]
  30. Pan Tao, Li Ruliang, Wong Boon-Seng, Liu Tong, Gambetti Pierluigi, Sy Man-Sun. Heterogeneity of normal prion protein in two- dimensional immunoblot: presence of various glycosylated and truncated forms. J Neurochem. 2002 Jun;81(5):1092–1101. doi: 10.1046/j.1471-4159.2002.00909.x. [DOI] [PubMed] [Google Scholar]
  31. Pauly P. C., Harris D. A. Copper stimulates endocytosis of the prion protein. J Biol Chem. 1998 Dec 11;273(50):33107–33110. doi: 10.1074/jbc.273.50.33107. [DOI] [PubMed] [Google Scholar]
  32. Perrimon N., Bernfield M. Specificities of heparan sulphate proteoglycans in developmental processes. Nature. 2000 Apr 13;404(6779):725–728. doi: 10.1038/35008000. [DOI] [PubMed] [Google Scholar]
  33. Petersen R. B., Parchi P., Richardson S. L., Urig C. B., Gambetti P. Effect of the D178N mutation and the codon 129 polymorphism on the metabolism of the prion protein. J Biol Chem. 1996 May 24;271(21):12661–12668. doi: 10.1074/jbc.271.21.12661. [DOI] [PubMed] [Google Scholar]
  34. Prusiner S. B. Novel proteinaceous infectious particles cause scrapie. Science. 1982 Apr 9;216(4542):136–144. doi: 10.1126/science.6801762. [DOI] [PubMed] [Google Scholar]
  35. Prusiner S. B. Prions. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13363–13383. doi: 10.1073/pnas.95.23.13363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Prusiner S. B. The prion diseases. Brain Pathol. 1998 Jul;8(3):499–513. doi: 10.1111/j.1750-3639.1998.tb00171.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rieger R., Edenhofer F., Lasmézas C. I., Weiss S. The human 37-kDa laminin receptor precursor interacts with the prion protein in eukaryotic cells. Nat Med. 1997 Dec;3(12):1383–1388. doi: 10.1038/nm1297-1383. [DOI] [PubMed] [Google Scholar]
  38. Safar J., Roller P. P., Gajdusek D. C., Gibbs C. J., Jr Conformational transitions, dissociation, and unfolding of scrapie amyloid (prion) protein. J Biol Chem. 1993 Sep 25;268(27):20276–20284. [PubMed] [Google Scholar]
  39. Schmitt-Ulms G., Legname G., Baldwin M. A., Ball H. L., Bradon N., Bosque P. J., Crossin K. L., Edelman G. M., DeArmond S. J., Cohen F. E. Binding of neural cell adhesion molecules (N-CAMs) to the cellular prion protein. J Mol Biol. 2001 Dec 14;314(5):1209–1225. doi: 10.1006/jmbi.2000.5183. [DOI] [PubMed] [Google Scholar]
  40. Shaked G. M., Meiner Z., Avraham I., Taraboulos A., Gabizon R. Reconstitution of prion infectivity from solubilized protease-resistant PrP and nonprotein components of prion rods. J Biol Chem. 2001 Jan 4;276(17):14324–14328. doi: 10.1074/jbc.M007815200. [DOI] [PubMed] [Google Scholar]
  41. Shyng S. L., Lehmann S., Moulder K. L., Harris D. A. Sulfated glycans stimulate endocytosis of the cellular isoform of the prion protein, PrPC, in cultured cells. J Biol Chem. 1995 Dec 15;270(50):30221–30229. doi: 10.1074/jbc.270.50.30221. [DOI] [PubMed] [Google Scholar]
  42. Snow A. D., Wight T. N., Nochlin D., Koike Y., Kimata K., DeArmond S. J., Prusiner S. B. Immunolocalization of heparan sulfate proteoglycans to the prion protein amyloid plaques of Gerstmann-Straussler syndrome, Creutzfeldt-Jakob disease and scrapie. Lab Invest. 1990 Nov;63(5):601–611. [PubMed] [Google Scholar]
  43. Stöckel J., Safar J., Wallace A. C., Cohen F. E., Prusiner S. B. Prion protein selectively binds copper(II) ions. Biochemistry. 1998 May 19;37(20):7185–7193. doi: 10.1021/bi972827k. [DOI] [PubMed] [Google Scholar]
  44. Verrecchio A., Germann M. W., Schick B. P., Kung B., Twardowski T., San Antonio J. D. Design of peptides with high affinities for heparin and endothelial cell proteoglycans. J Biol Chem. 2000 Mar 17;275(11):7701–7707. doi: 10.1074/jbc.275.11.7701. [DOI] [PubMed] [Google Scholar]
  45. Warner Richard G., Hundt Christoph, Weiss Stefan, Turnbull Jeremy E. Identification of the heparan sulfate binding sites in the cellular prion protein. J Biol Chem. 2002 Mar 6;277(21):18421–18430. doi: 10.1074/jbc.M110406200. [DOI] [PubMed] [Google Scholar]
  46. Wong B. S., Chen S. G., Colucci M., Xie Z., Pan T., Liu T., Li R., Gambetti P., Sy M. S., Brown D. R. Aberrant metal binding by prion protein in human prion disease. J Neurochem. 2001 Sep;78(6):1400–1408. doi: 10.1046/j.1471-4159.2001.00522.x. [DOI] [PubMed] [Google Scholar]
  47. Wong B. S., Pan T., Liu T., Li R., Gambetti P., Sy M. S. Differential contribution of superoxide dismutase activity by prion protein in vivo. Biochem Biophys Res Commun. 2000 Jun 24;273(1):136–139. doi: 10.1006/bbrc.2000.2911. [DOI] [PubMed] [Google Scholar]
  48. Wong B. S., Vénien-Bryan C., Williamson R. A., Burton D. R., Gambetti P., Sy M. S., Brown D. R., Jones I. M. Copper refolding of prion protein. Biochem Biophys Res Commun. 2000 Oct 5;276(3):1217–1224. doi: 10.1006/bbrc.2000.3604. [DOI] [PubMed] [Google Scholar]
  49. Wong C., Xiong L. W., Horiuchi M., Raymond L., Wehrly K., Chesebro B., Caughey B. Sulfated glycans and elevated temperature stimulate PrP(Sc)-dependent cell-free formation of protease-resistant prion protein. EMBO J. 2001 Feb 1;20(3):377–386. doi: 10.1093/emboj/20.3.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Zahn R., Liu A., Lührs T., Riek R., von Schroetter C., López García F., Billeter M., Calzolai L., Wider G., Wüthrich K. NMR solution structure of the human prion protein. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):145–150. doi: 10.1073/pnas.97.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES