Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Nov 15;368(Pt 1):365–369. doi: 10.1042/BJ20020840

Cathepsin B carboxydipeptidase specificity analysis using internally quenched fluorescent peptides.

Maria Helena S Cezari 1, Luciano Puzer 1, Maria Aparecida Juliano 1, Adriana K Carmona 1, Luiz Juliano 1
PMCID: PMC1222986  PMID: 12201820

Abstract

We have examined in detail the specificity of the subsites S1, S2, S1' and S2' for the carboxydipeptidase activity of cathepsin B by synthesizing and assaying four series of internally quenched fluorescent peptides based on the sequence Dnp-GFRFW-OH, where Dnp (2,4-dinitrophenyl) is the quenching group of the fluorescence of the tryptophan residue. Each position, except the glycine, was substituted with 15 different naturally occurring amino acids. Based on the results we obtained, we also synthesized efficient and sensitive substrates that contained o -aminobenzoic acid and 3-Dnp-(2,3-diaminopropionic acid), or epsilon-amino-Dnp-Lys, as the fluorescence donor-receptor pair. The higher kinetic parameter values for the carboxydipeptidase compared with the endopeptidase activity of cathepsin B allowed an accurate analysis of its specificity. The subsite S1 accepted preferentially basic amino acids for hydrolysis; however, substrates with phenylalanine and aliphatic side-chain-containing amino acids at P1 had lower K m values. Despite the presence of Glu245 at S2, this subsite presented clear preference for aromatic amino acid residues, and the substrate with a lysine residue at P2 was hydrolysed better than that containing an arginine residue. S1' is essentially a hydrophobic subsite, and S2' has particular preference for phenylalanine or tryptophan residues.

Full Text

The Full Text of this article is available as a PDF (103.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alves L. C., Melo R. L., Cezari M. H., Sanderson S. J., Mottram J. C., Coombs G. H., Juliano L., Juliano M. A. Analysis of the S(2) subsite specificities of the recombinant cysteine proteinases CPB of Leishmania mexicana, and cruzain of Trypanosoma cruzi, using fluorescent substrates containing non-natural basic amino acids. Mol Biochem Parasitol. 2001 Oct;117(2):137–143. doi: 10.1016/s0166-6851(01)00340-1. [DOI] [PubMed] [Google Scholar]
  2. Aronson N. N., Jr, Barrett A. J. The specificity of cathepsin B. Hydrolysis of glucagon at the C-terminus by a peptidyldipeptidase mechanism. Biochem J. 1978 Jun 1;171(3):759–765. doi: 10.1042/bj1710759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barrett A. J., Kirschke H. Cathepsin B, Cathepsin H, and cathepsin L. Methods Enzymol. 1981;80(Pt 100):535–561. doi: 10.1016/s0076-6879(81)80043-2. [DOI] [PubMed] [Google Scholar]
  4. Brömme D., Bonneau P. R., Lachance P., Storer A. C. Engineering the S2 subsite specificity of human cathepsin S to a cathepsin L- and cathepsin B-like specificity. J Biol Chem. 1994 Dec 2;269(48):30238–30242. [PubMed] [Google Scholar]
  5. Cygler M., Sivaraman J., Grochulski P., Coulombe R., Storer A. C., Mort J. S. Structure of rat procathepsin B: model for inhibition of cysteine protease activity by the proregion. Structure. 1996 Apr 15;4(4):405–416. doi: 10.1016/s0969-2126(96)00046-9. [DOI] [PubMed] [Google Scholar]
  6. Del Nery E., Alves L. C., Melo R. L., Cesari M. H., Juliano L., Juliano M. A. Specificity of cathepsin B to fluorescent substrates containing benzyl side-chain-substituted amino acids at P1 subsite. J Protein Chem. 2000 Jan;19(1):33–38. doi: 10.1023/a:1007090708945. [DOI] [PubMed] [Google Scholar]
  7. Frosch B. A., Berquin I., Emmert-Buck M. R., Moin K., Sloane B. F. Molecular regulation, membrane association and secretion of tumor cathepsin B. APMIS. 1999 Jan;107(1):28–37. doi: 10.1111/j.1699-0463.1999.tb01523.x. [DOI] [PubMed] [Google Scholar]
  8. Gillmor S. A., Craik C. S., Fletterick R. J. Structural determinants of specificity in the cysteine protease cruzain. Protein Sci. 1997 Aug;6(8):1603–1611. doi: 10.1002/pro.5560060801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Guicciardi M. E., Deussing J., Miyoshi H., Bronk S. F., Svingen P. A., Peters C., Kaufmann S. H., Gores G. J. Cathepsin B contributes to TNF-alpha-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest. 2000 Nov;106(9):1127–1137. doi: 10.1172/JCI9914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hasnain S., Hirama T., Huber C. P., Mason P., Mort J. S. Characterization of cathepsin B specificity by site-directed mutagenesis. Importance of Glu245 in the S2-P2 specificity for arginine and its role in transition state stabilization. J Biol Chem. 1993 Jan 5;268(1):235–240. [PubMed] [Google Scholar]
  11. Illy C., Quraishi O., Wang J., Purisima E., Vernet T., Mort J. S. Role of the occluding loop in cathepsin B activity. J Biol Chem. 1997 Jan 10;272(2):1197–1202. doi: 10.1074/jbc.272.2.1197. [DOI] [PubMed] [Google Scholar]
  12. Jia Z., Hasnain S., Hirama T., Lee X., Mort J. S., To R., Huber C. P. Crystal structures of recombinant rat cathepsin B and a cathepsin B-inhibitor complex. Implications for structure-based inhibitor design. J Biol Chem. 1995 Mar 10;270(10):5527–5533. doi: 10.1074/jbc.270.10.5527. [DOI] [PubMed] [Google Scholar]
  13. Judice W. A., Cezari M. H., Lima A. P., Scharfstein J., Chagas J. R., Tersariol I. L., Juliano M. A., Juliano L. Comparison of the specificity, stability and individual rate constants with respective activation parameters for the peptidase activity of cruzipain and its recombinant form, cruzain, from Trypanosoma cruzi. Eur J Biochem. 2001 Dec;268(24):6578–6586. doi: 10.1046/j.0014-2956.2001.02612.x. [DOI] [PubMed] [Google Scholar]
  14. Khouri H. E., Vernet T., Ménard R., Parlati F., Laflamme P., Tessier D. C., Gour-Salin B., Thomas D. Y., Storer A. C. Engineering of papain: selective alteration of substrate specificity by site-directed mutagenesis. Biochemistry. 1991 Sep 17;30(37):8929–8936. doi: 10.1021/bi00101a003. [DOI] [PubMed] [Google Scholar]
  15. Kirschke H., Barrett A. J., Rawlings N. D. Proteinases 1: lysosomal cysteine proteinases. Protein Profile. 1995;2(14):1581–1643. [PubMed] [Google Scholar]
  16. Kostoulas G., Lang A., Nagase H., Baici A. Stimulation of angiogenesis through cathepsin B inactivation of the tissue inhibitors of matrix metalloproteinases. FEBS Lett. 1999 Jul 23;455(3):286–290. doi: 10.1016/s0014-5793(99)00897-2. [DOI] [PubMed] [Google Scholar]
  17. Krupa Joanne C., Hasnain Sadiq, Nägler Dorit K., Ménard Robert, Mort John S. S2' substrate specificity and the role of His110 and His111 in the exopeptidase activity of human cathepsin B. Biochem J. 2002 Feb 1;361(Pt 3):613–619. doi: 10.1042/0264-6021:3610613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McGrath M. E. The lysosomal cysteine proteases. Annu Rev Biophys Biomol Struct. 1999;28:181–204. doi: 10.1146/annurev.biophys.28.1.181. [DOI] [PubMed] [Google Scholar]
  19. Melo R. L., Barbosa Pozzo R. C., Alves L. C., Perissutti E., Caliendo G., Santagada V., Juliano L., Juliano M. A. Synthesis and hydrolysis by cathepsin B of fluorogenic substrates with the general structure benzoyl-X-ARG-MCA containing non-natural basic amino acids at position X. Biochim Biophys Acta. 2001 May 5;1547(1):82–94. doi: 10.1016/s0167-4838(01)00171-6. [DOI] [PubMed] [Google Scholar]
  20. Mort J. S., Buttle D. J. Cathepsin B. Int J Biochem Cell Biol. 1997 May;29(5):715–720. doi: 10.1016/s1357-2725(96)00152-5. [DOI] [PubMed] [Google Scholar]
  21. Musil D., Zucic D., Turk D., Engh R. A., Mayr I., Huber R., Popovic T., Turk V., Towatari T., Katunuma N. The refined 2.15 A X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J. 1991 Sep;10(9):2321–2330. doi: 10.1002/j.1460-2075.1991.tb07771.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ménard R., Carmona E., Plouffe C., Brömme D., Konishi Y., Lefebvre J., Storer A. C. The specificity of the S1' subsite of cysteine proteases. FEBS Lett. 1993 Aug 9;328(1-2):107–110. doi: 10.1016/0014-5793(93)80975-z. [DOI] [PubMed] [Google Scholar]
  23. Nägler D. K., Storer A. C., Portaro F. C., Carmona E., Juliano L., Ménard R. Major increase in endopeptidase activity of human cathepsin B upon removal of occluding loop contacts. Biochemistry. 1997 Oct 14;36(41):12608–12615. doi: 10.1021/bi971264+. [DOI] [PubMed] [Google Scholar]
  24. Nägler D. K., Tam W., Storer A. C., Krupa J. C., Mort J. S., Ménard R. Interdependency of sequence and positional specificities for cysteine proteases of the papain family. Biochemistry. 1999 Apr 13;38(15):4868–4874. doi: 10.1021/bi982632s. [DOI] [PubMed] [Google Scholar]
  25. Portaro F. C., Santos A. B., Cezari M. H., Juliano M. A., Juliano L., Carmona E. Probing the specificity of cysteine proteinases at subsites remote from the active site: analysis of P4, P3, P2' and P3' variations in extended substrates. Biochem J. 2000 Apr 1;347(Pt 1):123–129. [PMC free article] [PubMed] [Google Scholar]
  26. Russo D. A., Petryk A., August C. S. Telomerase activity and phenotypic characterization in harvested bone marrow from a child with a germline cell cancer. Transplant Proc. 1997 Jun;29(4):2002–2002. doi: 10.1016/s0041-1345(97)00204-2. [DOI] [PubMed] [Google Scholar]
  27. Scharfstein J., Schmitz V., Morandi V., Capella M. M., Lima A. P., Morrot A., Juliano L., Müller-Esterl W. Host cell invasion by Trypanosoma cruzi is potentiated by activation of bradykinin B(2) receptors. J Exp Med. 2000 Nov 6;192(9):1289–1300. doi: 10.1084/jem.192.9.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sinha A. A., Jamuar M. P., Wilson M. J., Rozhin J., Sloane B. F. Plasma membrane association of cathepsin B in human prostate cancer: biochemical and immunogold electron microscopic analysis. Prostate. 2001 Nov 1;49(3):172–184. doi: 10.1002/pros.1132. [DOI] [PubMed] [Google Scholar]
  29. Stoka V., Turk B., Schendel S. L., Kim T. H., Cirman T., Snipas S. J., Ellerby L. M., Bredesen D., Freeze H., Abrahamson M. Lysosomal protease pathways to apoptosis. Cleavage of bid, not pro-caspases, is the most likely route. J Biol Chem. 2000 Nov 9;276(5):3149–3157. doi: 10.1074/jbc.M008944200. [DOI] [PubMed] [Google Scholar]
  30. Szpaderska A. M., Frankfater A. An intracellular form of cathepsin B contributes to invasiveness in cancer. Cancer Res. 2001 Apr 15;61(8):3493–3500. [PubMed] [Google Scholar]
  31. Turk D., Guncar G., Podobnik M., Turk B. Revised definition of substrate binding sites of papain-like cysteine proteases. Biol Chem. 1998 Feb;379(2):137–147. doi: 10.1515/bchm.1998.379.2.137. [DOI] [PubMed] [Google Scholar]
  32. Turk D., Podobnik M., Popovic T., Katunuma N., Bode W., Huber R., Turk V. Crystal structure of cathepsin B inhibited with CA030 at 2.0-A resolution: A basis for the design of specific epoxysuccinyl inhibitors. Biochemistry. 1995 Apr 11;34(14):4791–4797. doi: 10.1021/bi00014a037. [DOI] [PubMed] [Google Scholar]
  33. Yan S., Sameni M., Sloane B. F. Cathepsin B and human tumor progression. Biol Chem. 1998 Feb;379(2):113–123. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES