Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Nov 15;368(Pt 1):233–242. doi: 10.1042/BJ20020869

A locus on human chromosome 20 contains several genes expressing protease inhibitor domains with homology to whey acidic protein.

Adam Clauss 1, Hans Lilja 1, Ake Lundwall 1
PMCID: PMC1222987  PMID: 12206714

Abstract

A locus containing 14 genes, encoding protein domains that have homology with whey acidic protein (WAP), has been identified in a region of 678 kb on human chromosome 20q12-13.1. Among them are genes of the known or postulated protease inhibitors elafin, secretory leucocyte protease inhibitor, human epididymis gene product 4, eppin, and huWAP2. Nucleotide sequences of full-length transcripts were obtained from cDNA fragments generated by rapid amplification of cDNA ends. Characteristic features of the genes are that the upstream promoter regions are devoid of TATA-boxes and that the coding nucleotides are divided into distinct exons for the signal peptide and for each WAP domain. In most cases, there is also a separate exon encompassing a few terminal codons and the 3' untranslated nucleotides. There are also examples of mixed type inhibitors, that encode inhibitor domains of both WAP and Kunitz types. Several of the genes appear to be expressed ubiquitously, but, in most cases, the highest transcript levels are found in epididymis followed by testis and trachea. Some of the genes also display high transcript levels in neural tissues. Potential biological roles of protein products could be in host defence against invading micro-organisms or in the regulation of endogenous proteolytic enzymes, of which those originating from the kallikrein gene locus on chromosome 19 are of particular interest.

Full Text

The Full Text of this article is available as a PDF (618.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aeschlimann D., Paulsson M. Transglutaminases: protein cross-linking enzymes in tissues and body fluids. Thromb Haemost. 1994 Apr;71(4):402–415. [PubMed] [Google Scholar]
  2. Araki K., Kuroki J., Ito O., Kuwada M., Tachibana S. Novel peptide inhibitor (SPAI) of Na+, K+-ATPase from porcine intestine. Biochem Biophys Res Commun. 1989 Oct 16;164(1):496–502. doi: 10.1016/0006-291x(89)91747-6. [DOI] [PubMed] [Google Scholar]
  3. Bolognesi M., Gatti G., Menagatti E., Guarneri M., Marquart M., Papamokos E., Huber R. Three-dimensional structure of the complex between pancreatic secretory trypsin inhibitor (Kazal type) and trypsinogen at 1.8 A resolution. Structure solution, crystallographic refinement and preliminary structural interpretation. J Mol Biol. 1982 Dec 25;162(4):839–868. doi: 10.1016/0022-2836(82)90550-2. [DOI] [PubMed] [Google Scholar]
  4. Coronel C. E., San Agustin J., Lardy H. A. Purification and structure of caltrin-like proteins from seminal vesicle of the guinea pig. J Biol Chem. 1990 Apr 25;265(12):6854–6859. [PubMed] [Google Scholar]
  5. Fink E., Jaumann E., Fritz H., Ingrisch H., Werle E. Protease-Inhibitoren im menschichen Spermaplasma. Isolierung durch Affinitätschromatographie und Hemmverhalten. Hoppe Seylers Z Physiol Chem. 1971 Nov;352(11):1591–1594. [PubMed] [Google Scholar]
  6. Grütter M. G., Fendrich G., Huber R., Bode W. The 2.5 A X-ray crystal structure of the acid-stable proteinase inhibitor from human mucous secretions analysed in its complex with bovine alpha-chymotrypsin. EMBO J. 1988 Feb;7(2):345–351. doi: 10.1002/j.1460-2075.1988.tb02819.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Harvey T. J., Hooper J. D., Myers S. A., Stephenson S. A., Ashworth L. K., Clements J. A. Tissue-specific expression patterns and fine mapping of the human kallikrein (KLK) locus on proximal 19q13.4. J Biol Chem. 2000 Dec 1;275(48):37397–37406. doi: 10.1074/jbc.M004525200. [DOI] [PubMed] [Google Scholar]
  8. Hennighausen L. G., Sippel A. E. Mouse whey acidic protein is a novel member of the family of 'four-disulfide core' proteins. Nucleic Acids Res. 1982 Apr 24;10(8):2677–2684. doi: 10.1093/nar/10.8.2677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hiemstra P. S., Maassen R. J., Stolk J., Heinzel-Wieland R., Steffens G. J., Dijkman J. H. Antibacterial activity of antileukoprotease. Infect Immun. 1996 Nov;64(11):4520–4524. doi: 10.1128/iai.64.11.4520-4524.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Huntington J. A., Read R. J., Carrell R. W. Structure of a serpin-protease complex shows inhibition by deformation. Nature. 2000 Oct 19;407(6806):923–926. doi: 10.1038/35038119. [DOI] [PubMed] [Google Scholar]
  11. Kirchhoff C., Habben I., Ivell R., Krull N. A major human epididymis-specific cDNA encodes a protein with sequence homology to extracellular proteinase inhibitors. Biol Reprod. 1991 Aug;45(2):350–357. doi: 10.1095/biolreprod45.2.350. [DOI] [PubMed] [Google Scholar]
  12. Legouis R., Hardelin J. P., Levilliers J., Claverie J. M., Compain S., Wunderle V., Millasseau P., Le Paslier D., Cohen D., Caterina D. The candidate gene for the X-linked Kallmann syndrome encodes a protein related to adhesion molecules. Cell. 1991 Oct 18;67(2):423–435. doi: 10.1016/0092-8674(91)90193-3. [DOI] [PubMed] [Google Scholar]
  13. Lilja H. A kallikrein-like serine protease in prostatic fluid cleaves the predominant seminal vesicle protein. J Clin Invest. 1985 Nov;76(5):1899–1903. doi: 10.1172/JCI112185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lundwall A. Characterization of the gene for prostate-specific antigen, a human glandular kallikrein. Biochem Biophys Res Commun. 1989 Jun 30;161(3):1151–1159. doi: 10.1016/0006-291x(89)91362-4. [DOI] [PubMed] [Google Scholar]
  15. Lundwall A., Lazure C. A novel gene family encoding proteins with highly differing structure because of a rapidly evolving exon. FEBS Lett. 1995 Oct 23;374(1):53–56. doi: 10.1016/0014-5793(95)01076-q. [DOI] [PubMed] [Google Scholar]
  16. Lundwall A., Olsson A. Y. Semenogelin II gene is replaced by a truncated line 1 repeat in the cotton-top tamarin. Biol Reprod. 2001 Aug;65(2):420–425. doi: 10.1095/biolreprod65.2.420. [DOI] [PubMed] [Google Scholar]
  17. Lundwall A. The cloning of a rapidly evolving seminal-vesicle-transcribed gene encoding the major clot-forming protein of mouse semen. Eur J Biochem. 1996 Jan 15;235(1-2):424–430. doi: 10.1111/j.1432-1033.1996.00424.x. [DOI] [PubMed] [Google Scholar]
  18. Lundwall A. The cotton-top tamarin carries an extended semenogelin I gene but no semenogelin II gene. Eur J Biochem. 1998 Jul 1;255(1):45–51. doi: 10.1046/j.1432-1327.1998.2550045.x. [DOI] [PubMed] [Google Scholar]
  19. Lundwall A., Ulvsback M. The gene of the protease inhibitor SKALP/elafin is a member of the REST gene family. Biochem Biophys Res Commun. 1996 Apr 16;221(2):323–327. doi: 10.1006/bbrc.1996.0594. [DOI] [PubMed] [Google Scholar]
  20. Lundwall Ake, Clauss Adam. Identification of a novel protease inhibitor gene that is highly expressed in the prostate. Biochem Biophys Res Commun. 2002 Jan 11;290(1):452–456. doi: 10.1006/bbrc.2001.6224. [DOI] [PubMed] [Google Scholar]
  21. Molhuizen H. O., Zeeuwen P. L., Olde Weghuis D., Geurts van Kessel A., Schalkwijk J. Assignment of the human gene encoding the epidermal serine proteinase inhibitor SKALP (PI3) to chromosome region 20q12-->q13. Cytogenet Cell Genet. 1994;66(2):129–131. doi: 10.1159/000133683. [DOI] [PubMed] [Google Scholar]
  22. Ohlsson M., Rosengren M., Tegner H., Ohlsson K. Quantification of granulocyte elastase inhibitors in human mixed saliva and in pure parotid secretion. Hoppe Seylers Z Physiol Chem. 1983 Sep;364(9):1323–1328. doi: 10.1515/bchm2.1983.364.2.1323. [DOI] [PubMed] [Google Scholar]
  23. Richardson R. T., Sivashanmugam P., Hall S. H., Hamil K. G., Moore P. A., Ruben S. M., French F. S., O'Rand M. Cloning and sequencing of human Eppin: a novel family of protease inhibitors expressed in the epididymis and testis. Gene. 2001 May 30;270(1-2):93–102. doi: 10.1016/s0378-1119(01)00462-0. [DOI] [PubMed] [Google Scholar]
  24. Riegman P. H., Vlietstra R. J., van der Korput J. A., Romijn J. C., Trapman J. Characterization of the prostate-specific antigen gene: a novel human kallikrein-like gene. Biochem Biophys Res Commun. 1989 Feb 28;159(1):95–102. doi: 10.1016/0006-291x(89)92409-1. [DOI] [PubMed] [Google Scholar]
  25. Rühlmann A., Kukla D., Schwager P., Bartels K., Huber R. Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. Crystal structure determination and stereochemistry of the contact region. J Mol Biol. 1973 Jul 5;77(3):417–436. doi: 10.1016/0022-2836(73)90448-8. [DOI] [PubMed] [Google Scholar]
  26. Tamechika I., Itakura M., Saruta Y., Furukawa M., Kato A., Tachibana S., Hirose S. Accelerated evolution in inhibitor domains of porcine elafin family members. J Biol Chem. 1996 Mar 22;271(12):7012–7018. doi: 10.1074/jbc.271.12.7012. [DOI] [PubMed] [Google Scholar]
  27. Tegner H., Ohlsson K. Localization of a low molecular weight protease inhibitor to tracheal and mixillary sinus mucosa. Hoppe Seylers Z Physiol Chem. 1977 Apr;358(4):425–429. doi: 10.1515/bchm2.1977.358.1.425. [DOI] [PubMed] [Google Scholar]
  28. Thompson R. C., Ohlsson K. Isolation, properties, and complete amino acid sequence of human secretory leukocyte protease inhibitor, a potent inhibitor of leukocyte elastase. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6692–6696. doi: 10.1073/pnas.83.18.6692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tomee J. F., Koëter G. H., Hiemstra P. S., Kauffman H. F. Secretory leukoprotease inhibitor: a native antimicrobial protein presenting a new therapeutic option? Thorax. 1998 Feb;53(2):114–116. doi: 10.1136/thx.53.2.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tsunemi M., Matsuura Y., Sakakibara S., Katsube Y. Crystal structure of an elastase-specific inhibitor elafin complexed with porcine pancreatic elastase determined at 1.9 A resolution. Biochemistry. 1996 Sep 10;35(36):11570–11576. doi: 10.1021/bi960900l. [DOI] [PubMed] [Google Scholar]
  31. Ulvsbäck M., Lazure C., Lilja H., Spurr N. K., Rao V. V., Löffler C., Hansmann I., Lundwall A. Gene structure of semenogelin I and II. The predominant proteins in human semen are encoded by two homologous genes on chromosome 20. J Biol Chem. 1992 Sep 5;267(25):18080–18084. [PubMed] [Google Scholar]
  32. Ulvsbäck M., Lundwall A. Cloning of the semenogelin II gene of the rhesus monkey. Duplications of 360 bp extend the coding region in man, rhesus monkey and baboon. Eur J Biochem. 1997 Apr 1;245(1):25–31. doi: 10.1111/j.1432-1033.1997.00025.x. [DOI] [PubMed] [Google Scholar]
  33. Wiedow O., Schröder J. M., Gregory H., Young J. A., Christophers E. Elafin: an elastase-specific inhibitor of human skin. Purification, characterization, and complete amino acid sequence. J Biol Chem. 1990 Sep 5;265(25):14791–14795. [PubMed] [Google Scholar]
  34. Yousef G. M., Chang A., Scorilas A., Diamandis E. P. Genomic organization of the human kallikrein gene family on chromosome 19q13.3-q13.4. Biochem Biophys Res Commun. 2000 Sep 16;276(1):125–133. doi: 10.1006/bbrc.2000.3448. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES