Abstract
The structural compatibility of two hyperthermostable family 1 glycoside hydrolases, Pyrococcus furiosus CelB and Sulfolobus solfataricus LacS, as well as their kinetic potential were studied by construction of a library of 2048 hybrid beta-glycosidases using DNA family shuffling. The hybrids were tested for their thermostability, ability to hydrolyse lactose and sensitivity towards inhibition by glucose. Three screening rounds at 70 degrees C led to the isolation of three high-performance hybrid enzymes (hybrid 11, 18 and 20) that had 1.5-3.5-fold and 3.5-8.6-fold increased lactose hydrolysis rates compared with parental CelB and LacS respectively. The three variants were the result of a single crossover event, which gave rise to hybrids with a LacS N-terminus and a main CelB sequence. Constructed three-dimensional models of the hybrid enzymes revealed that the catalytic (betaalpha)(8)-barrel was composed of both LacS and CelB elements. In addition, an extra intersubunit hydrogen bond in hybrids 18 and 20 might explain their superior stability over hybrid 11. This study demonstrates that extremely thermostable enzymes with limited homology and different mechanisms of stabilization can be efficiently shuffled to form stable hybrids with improved catalytic features.
Full Text
The Full Text of this article is available as a PDF (288.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aguilar C. F., Sanderson I., Moracci M., Ciaramella M., Nucci R., Rossi M., Pearl L. H. Crystal structure of the beta-glycosidase from the hyperthermophilic archeon Sulfolobus solfataricus: resilience as a key factor in thermostability. J Mol Biol. 1997 Sep 5;271(5):789–802. doi: 10.1006/jmbi.1997.1215. [DOI] [PubMed] [Google Scholar]
- Arrizubieta M. J., Polaina J. Increased thermal resistance and modification of the catalytic properties of a beta-glucosidase by random mutagenesis and in vitro recombination. J Biol Chem. 2000 Sep 15;275(37):28843–28848. doi: 10.1074/jbc.M003036200. [DOI] [PubMed] [Google Scholar]
- Catanzano F., Graziano G., De Paola B., Barone G., D'Auria S., Rossi M., Nucci R. Guanidine-induced denaturation of beta-glycosidase from Sulfolobus solfataricus expressed in Escherichia coli. Biochemistry. 1998 Oct 13;37(41):14484–14490. doi: 10.1021/bi980490w. [DOI] [PubMed] [Google Scholar]
- Chang C. C., Chen T. T., Cox B. W., Dawes G. N., Stemmer W. P., Punnonen J., Patten P. A. Evolution of a cytokine using DNA family shuffling. Nat Biotechnol. 1999 Aug;17(8):793–797. doi: 10.1038/11737. [DOI] [PubMed] [Google Scholar]
- Corbett K., Fordham-Skelton A. P., Gatehouse J. A., Davis B. G. Tailoring the substrate specificity of the beta-glycosidase from the thermophilic archaeon Sulfolobus solfataricus. FEBS Lett. 2001 Dec 14;509(3):355–360. doi: 10.1016/s0014-5793(01)03154-4. [DOI] [PubMed] [Google Scholar]
- Crameri A., Raillard S. A., Bermudez E., Stemmer W. P. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature. 1998 Jan 15;391(6664):288–291. doi: 10.1038/34663. [DOI] [PubMed] [Google Scholar]
- Cubellis M. V., Rozzo C., Montecucchi P., Rossi M. Isolation and sequencing of a new beta-galactosidase-encoding archaebacterial gene. Gene. 1990 Sep 28;94(1):89–94. doi: 10.1016/0378-1119(90)90472-4. [DOI] [PubMed] [Google Scholar]
- D'auria S., Barone R., Rossi M., Nucci R., Barone G., Fessas D., Bertoli E., Tanfani F. Effects of temperature and SDS on the structure of beta-glycosidase from the thermophilic archaeon Sulfolobus solfataricus. Biochem J. 1997 May 1;323(Pt 3):833–840. doi: 10.1042/bj3230833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies G. J., Mackenzie L., Varrot A., Dauter M., Brzozowski A. M., Schülein M., Withers S. G. Snapshots along an enzymatic reaction coordinate: analysis of a retaining beta-glycoside hydrolase. Biochemistry. 1998 Aug 25;37(34):11707–11713. doi: 10.1021/bi981315i. [DOI] [PubMed] [Google Scholar]
- Fischer L., Bromann R., Kengen S. W., de Vos W. M., Wagner F. Catalytical potency of beta-glucosidase from the extremophile Pyrococcus furiosus in glucoconjugate synthesis. Biotechnology (N Y) 1996 Jan;14(1):88–91. doi: 10.1038/nbt0196-88. [DOI] [PubMed] [Google Scholar]
- Gill S. C., von Hippel P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. doi: 10.1016/0003-2697(89)90602-7. [DOI] [PubMed] [Google Scholar]
- Giver L., Gershenson A., Freskgard P. O., Arnold F. H. Directed evolution of a thermostable esterase. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):12809–12813. doi: 10.1073/pnas.95.22.12809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guex N., Diemand A., Peitsch M. C. Protein modelling for all. Trends Biochem Sci. 1999 Sep;24(9):364–367. doi: 10.1016/s0968-0004(99)01427-9. [DOI] [PubMed] [Google Scholar]
- Guex N., Peitsch M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997 Dec;18(15):2714–2723. doi: 10.1002/elps.1150181505. [DOI] [PubMed] [Google Scholar]
- Jaenicke R. Stability and stabilization of globular proteins in solution. J Biotechnol. 2000 May 26;79(3):193–203. doi: 10.1016/s0168-1656(00)00236-4. [DOI] [PubMed] [Google Scholar]
- Kaper T., Lebbink J. H., Pouwels J., Kopp J., Schulz G. E., van der Oost J., de Vos W. M. Comparative structural analysis and substrate specificity engineering of the hyperthermostable beta-glucosidase CelB from Pyrococcus furiosus. Biochemistry. 2000 May 2;39(17):4963–4970. doi: 10.1021/bi992463r. [DOI] [PubMed] [Google Scholar]
- Kaper T., Verhees C. H., Lebbink J. H., van Lieshout J. F., Kluskens L. D., Ward D. E., Kengen S. W., Beerthuyzen M. M., de Vos W. M., van der Oost J. Characterization of beta-glycosylhydrolases from Pyrococcus furiosus. Methods Enzymol. 2001;330:329–346. doi: 10.1016/s0076-6879(01)30386-5. [DOI] [PubMed] [Google Scholar]
- Kaper Thijs, van Heusden Hester H., van Loo Bert, Vasella Andrea, van der Oost John, de Vos Willem M. Substrate specificity engineering of beta-mannosidase and beta-glucosidase from Pyrococcus by exchange of unique active site residues. Biochemistry. 2002 Mar 26;41(12):4147–4155. doi: 10.1021/bi011935a. [DOI] [PubMed] [Google Scholar]
- Kempton J. B., Withers S. G. Mechanism of Agrobacterium beta-glucosidase: kinetic studies. Biochemistry. 1992 Oct 20;31(41):9961–9969. doi: 10.1021/bi00156a015. [DOI] [PubMed] [Google Scholar]
- Kengen S. W., Luesink E. J., Stams A. J., Zehnder A. J. Purification and characterization of an extremely thermostable beta-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Eur J Biochem. 1993 Apr 1;213(1):305–312. doi: 10.1111/j.1432-1033.1993.tb17763.x. [DOI] [PubMed] [Google Scholar]
- Kikuchi M., Ohnishi K., Harayama S. Novel family shuffling methods for the in vitro evolution of enzymes. Gene. 1999 Aug 5;236(1):159–167. doi: 10.1016/s0378-1119(99)00240-1. [DOI] [PubMed] [Google Scholar]
- Lebbink J. H., Kaper T., Bron P., van der Oost J., de Vos W. M. Improving low-temperature catalysis in the hyperthermostable Pyrococcus furiosus beta-glucosidase CelB by directed evolution. Biochemistry. 2000 Apr 4;39(13):3656–3665. doi: 10.1021/bi991483q. [DOI] [PubMed] [Google Scholar]
- Lebbink J. H., Kaper T., Kengen S. W., van der Oost J., de Vos W. M. beta-Glucosidase CelB from Pyrococcus furiosus: production by Escherichia coli, purification, and in vitro evolution. Methods Enzymol. 2001;330:364–379. doi: 10.1016/s0076-6879(01)30389-0. [DOI] [PubMed] [Google Scholar]
- Lebbink J. H., Knapp S., van der Oost J., Rice D., Ladenstein R., de Vos W. M. Engineering activity and stability of Thermotoga maritima glutamate dehydrogenase. II: construction of a 16-residue ion-pair network at the subunit interface. J Mol Biol. 1999 Jun 4;289(2):357–369. doi: 10.1006/jmbi.1999.2779. [DOI] [PubMed] [Google Scholar]
- Lorimer I. A., Pastan I. Random recombination of antibody single chain Fv sequences after fragmentation with DNaseI in the presence of Mn2+. Nucleic Acids Res. 1995 Aug 11;23(15):3067–3068. doi: 10.1093/nar/23.15.3067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mandelman D., Schwarz F. P., Li H., Poulos T. L. The role of quaternary interactions on the stability and activity of ascorbate peroxidase. Protein Sci. 1998 Oct;7(10):2089–2098. doi: 10.1002/pro.5560071005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merz A., Yee M. C., Szadkowski H., Pappenberger G., Crameri A., Stemmer W. P., Yanofsky C., Kirschner K. Improving the catalytic activity of a thermophilic enzyme at low temperatures. Biochemistry. 2000 Feb 8;39(5):880–889. doi: 10.1021/bi992333i. [DOI] [PubMed] [Google Scholar]
- Moracci M., Trincone A., Perugino G., Ciaramella M., Rossi M. Restoration of the activity of active-site mutants of the hyperthermophilic beta-glycosidase from Sulfolobus solfataricus: dependence of the mechanism on the action of external nucleophiles. Biochemistry. 1998 Dec 8;37(49):17262–17270. doi: 10.1021/bi981855f. [DOI] [PubMed] [Google Scholar]
- Ness J. E., Welch M., Giver L., Bueno M., Cherry J. R., Borchert T. V., Stemmer W. P., Minshull J. DNA shuffling of subgenomic sequences of subtilisin. Nat Biotechnol. 1999 Sep;17(9):893–896. doi: 10.1038/12884. [DOI] [PubMed] [Google Scholar]
- Ostermeier M., Nixon A. E., Shim J. H., Benkovic S. J. Combinatorial protein engineering by incremental truncation. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3562–3567. doi: 10.1073/pnas.96.7.3562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petzelbauer I., Nidetzky B., Haltrich D., Kulbe K. D. Development of an ultra-high-temperature process for the enzymatic hydrolysis of lactose. I. The properties of two thermostable beta-glycosidases. Biotechnol Bioeng. 1999 Aug 5;64(3):322–332. doi: 10.1002/(sici)1097-0290(19990805)64:3<322::aid-bit8>3.0.co;2-9. [DOI] [PubMed] [Google Scholar]
- Petzelbauer Inge, Splechtna Barbara, Nidetzky Bernd. Development of an ultrahigh-temperature process for the enzymatic hydrolysis of lactose. III. Utilization of two thermostable beta-glycosidases in a continuous ultrafiltration membrane reactor and galacto-oligosaccharide formation under steady-state conditions. Biotechnol Bioeng. 2002 Feb 15;77(4):394–404. [PubMed] [Google Scholar]
- Pisani F. M., Rella R., Raia C. A., Rozzo C., Nucci R., Gambacorta A., De Rosa M., Rossi M. Thermostable beta-galactosidase from the archaebacterium Sulfolobus solfataricus. Purification and properties. Eur J Biochem. 1990 Jan 26;187(2):321–328. doi: 10.1111/j.1432-1033.1990.tb15308.x. [DOI] [PubMed] [Google Scholar]
- Pouwels J., Moracci M., Cobucci-Ponzano B., Perugino G., van der Oost J., Kaper T., Lebbink J. H., de Vos W. M., Ciaramella M., Rossi M. Activity and stability of hyperthermophilic enzymes: a comparative study on two archaeal beta-glycosidases. Extremophiles. 2000 Jun;4(3):157–164. doi: 10.1007/s007920070030. [DOI] [PubMed] [Google Scholar]
- Roovers M., Sanchez R., Legrain C., Glansdorff N. Experimental evolution of enzyme temperature activity profile: selection in vivo and characterization of low-temperature-adapted mutants of Pyrococcus furiosus ornithine carbamoyltransferase. J Bacteriol. 2001 Feb;183(3):1101–1105. doi: 10.1128/JB.183.3.1101-1105.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sieber V., Martinez C. A., Arnold F. H. Libraries of hybrid proteins from distantly related sequences. Nat Biotechnol. 2001 May;19(5):456–460. doi: 10.1038/88129. [DOI] [PubMed] [Google Scholar]
- Spiller B., Gershenson A., Arnold F. H., Stevens R. C. A structural view of evolutionary divergence. Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12305–12310. doi: 10.1073/pnas.96.22.12305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stemmer W. P. Rapid evolution of a protein in vitro by DNA shuffling. Nature. 1994 Aug 4;370(6488):389–391. doi: 10.1038/370389a0. [DOI] [PubMed] [Google Scholar]
- Trincone A., Perugino G., Rossi M., Moracci M. A novel thermophilic glycosynthase that effects branching glycosylation. Bioorg Med Chem Lett. 2000 Feb 21;10(4):365–368. doi: 10.1016/s0960-894x(99)00700-3. [DOI] [PubMed] [Google Scholar]
- Vetriani C., Maeder D. L., Tolliday N., Yip K. S., Stillman T. J., Britton K. L., Rice D. W., Klump H. H., Robb F. T. Protein thermostability above 100 degreesC: a key role for ionic interactions. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12300–12305. doi: 10.1073/pnas.95.21.12300. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vieille C., Zeikus G. J. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev. 2001 Mar;65(1):1–43. doi: 10.1128/MMBR.65.1.1-43.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Volkov A. A., Arnold F. H. Methods for in vitro DNA recombination and random chimeragenesis. Methods Enzymol. 2000;328:447–456. doi: 10.1016/s0076-6879(00)28411-5. [DOI] [PubMed] [Google Scholar]
- Wiesmann C., Hengstenberg W., Schulz G. E. Crystal structures and mechanism of 6-phospho-beta-galactosidase from Lactococcus lactis. J Mol Biol. 1997 Jun 27;269(5):851–860. doi: 10.1006/jmbi.1997.1084. [DOI] [PubMed] [Google Scholar]
