Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Dec 1;368(Pt 2):495–505. doi: 10.1042/BJ20020706

Glycosylation of human proteinase-activated receptor-2 (hPAR2): role in cell surface expression and signalling.

Steven J Compton 1, Sabrina Sandhu 1, Suranga J Wijesuriya 1, Morley D Hollenberg 1
PMCID: PMC1222997  PMID: 12171601

Abstract

We have analysed the role of N-linked glycosylation in regulating human proteinase-activated receptor-2 (hPAR(2)) expression and function. Epitope-tagged wild-type hPAR(2) (wt-hPAR(2)) or hPAR(2) that lacked glycosylation sequons (following site-directed mutagenesis) in either the N-terminus [hPAR(2)N30A (Asn(30)-->Ala)], extracellular loop 2 [ECL2; hPAR(2)N222Q (Asn(222)-->Gln) or hPAR(2)N222A (Asn(222)-->Ala)] or both (hPAR(2)N30A,N222A or hPAR(2)N30A,N222Q) were expressed in the Chinese-hamster ovary (CHO) fibroblast cell line, Pro5. Western blot analysis of wt-hPAR(2) showed mature wt-hPAR(2) to have a molecular mass of 55-100 kDa, and 33-48 kDa following N -glycosidase F deglycosylation. FACS analysis and immunocytochemistry of the wt-hPAR(2) and PAR(2) mutant cell lines revealed that removal of both glycosylation sequons decreases (50% of wt-hPAR(2)) cell surface expression. Western blot analysis indicated that both N-linked sites are glycosylated. In functional studies, hPAR(2)N30A displayed a selective and significant increase in sensitivity towards tryptase. Interestingly, hPAR(2)N222A displayed a loss in sensitivity towards all PAR(2) agonists tested. However, further analysis revealed receptor sensitivity to alanine mutations in this domain, as the more conservative substitution hPAR(2)N222Q displayed no change in response to PAR(2) agonists. hPAR(2)N30A,N222Q displayed increased sensitivity towards tryptase, but a loss in sensitivity towards trypsin and the synthetic peptide SLIGRL-NH(2), although this loss in sensitivity towards trypsin and SLIGRL-NH(2) was secondary to changes in cell-surface expression. Finally, expression of sialic-acid-deficient wt-hPAR(2) in the CHO Lec2 glycosylation-deficient mutant cell line, showed a 40 kDa loss in molecular mass, in addition to a marked and selective increase in sensitivity towards tryptase. We conclude that hPAR(2) N-linked glycosylation and sialylation regulates receptor expression and/or signalling.

Full Text

The Full Text of this article is available as a PDF (335.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Ani B., Saifeddine M., Kawabata A., Hollenberg M. D. Proteinase activated receptor 2: Role of extracellular loop 2 for ligand-mediated activation. Br J Pharmacol. 1999 Nov;128(5):1105–1113. doi: 10.1038/sj.bjp.0702834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Axford J. S. Glycosylation and rheumatic disease. Biochim Biophys Acta. 1999 Oct 8;1455(2-3):219–229. doi: 10.1016/s0925-4439(99)00057-5. [DOI] [PubMed] [Google Scholar]
  3. Blackhart B. D., Ruslim-Litrus L., Lu C. C., Alves V. L., Teng W., Scarborough R. M., Reynolds E. E., Oksenberg D. Extracellular mutations of protease-activated receptor-1 result in differential activation by thrombin and thrombin receptor agonist peptide. Mol Pharmacol. 2000 Dec;58(6):1178–1187. doi: 10.1124/mol.58.6.1178. [DOI] [PubMed] [Google Scholar]
  4. Bohm S. K., Kong W., Bromme D., Smeekens S. P., Anderson D. C., Connolly A., Kahn M., Nelken N. A., Coughlin S. R., Payan D. G. Molecular cloning, expression and potential functions of the human proteinase-activated receptor-2. Biochem J. 1996 Mar 15;314(Pt 3):1009–1016. doi: 10.1042/bj3141009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Böhm S. K., Khitin L. M., Grady E. F., Aponte G., Payan D. G., Bunnett N. W. Mechanisms of desensitization and resensitization of proteinase-activated receptor-2. J Biol Chem. 1996 Sep 6;271(36):22003–22016. doi: 10.1074/jbc.271.36.22003. [DOI] [PubMed] [Google Scholar]
  6. Camerer E., Huang W., Coughlin S. R. Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5255–5260. doi: 10.1073/pnas.97.10.5255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Compton S. J., Cairns J. A., Holgate S. T., Walls A. F. The role of mast cell tryptase in regulating endothelial cell proliferation, cytokine release, and adhesion molecule expression: tryptase induces expression of mRNA for IL-1 beta and IL-8 and stimulates the selective release of IL-8 from human umbilical vein endothelial cells. J Immunol. 1998 Aug 15;161(4):1939–1946. [PubMed] [Google Scholar]
  8. Compton S. J., Cairns J. A., Palmer K. J., Al-Ani B., Hollenberg M. D., Walls A. F. A polymorphic protease-activated receptor 2 (PAR2) displaying reduced sensitivity to trypsin and differential responses to PAR agonists. J Biol Chem. 2000 Dec 15;275(50):39207–39212. doi: 10.1074/jbc.M007215200. [DOI] [PubMed] [Google Scholar]
  9. Compton S. J., Renaux B., Wijesuriya S. J., Hollenberg M. D. Glycosylation and the activation of proteinase-activated receptor 2 (PAR(2)) by human mast cell tryptase. Br J Pharmacol. 2001 Oct;134(4):705–718. doi: 10.1038/sj.bjp.0704303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Deutscher S. L., Nuwayhid N., Stanley P., Briles E. I., Hirschberg C. B. Translocation across Golgi vesicle membranes: a CHO glycosylation mutant deficient in CMP-sialic acid transport. Cell. 1984 Dec;39(2 Pt 1):295–299. doi: 10.1016/0092-8674(84)90007-2. [DOI] [PubMed] [Google Scholar]
  11. Déry O., Corvera C. U., Steinhoff M., Bunnett N. W. Proteinase-activated receptors: novel mechanisms of signaling by serine proteases. Am J Physiol. 1998 Jun;274(6 Pt 1):C1429–C1452. doi: 10.1152/ajpcell.1998.274.6.C1429. [DOI] [PubMed] [Google Scholar]
  12. Eckhardt M., Gotza B., Gerardy-Schahn R. Mutants of the CMP-sialic acid transporter causing the Lec2 phenotype. J Biol Chem. 1998 Aug 7;273(32):20189–20195. doi: 10.1074/jbc.273.32.20189. [DOI] [PubMed] [Google Scholar]
  13. Hollenberg Morley D., Compton Steven J. International Union of Pharmacology. XXVIII. Proteinase-activated receptors. Pharmacol Rev. 2002 Jun;54(2):203–217. doi: 10.1124/pr.54.2.203. [DOI] [PubMed] [Google Scholar]
  14. Huang C., De Sanctis G. T., O'Brien P. J., Mizgerd J. P., Friend D. S., Drazen J. M., Brass L. F., Stevens R. L. Evaluation of the substrate specificity of human mast cell tryptase beta I and demonstration of its importance in bacterial infections of the lung. J Biol Chem. 2001 May 2;276(28):26276–26284. doi: 10.1074/jbc.M102356200. [DOI] [PubMed] [Google Scholar]
  15. Ishihara H., Connolly A. J., Zeng D., Kahn M. L., Zheng Y. W., Timmons C., Tram T., Coughlin S. R. Protease-activated receptor 3 is a second thrombin receptor in humans. Nature. 1997 Apr 3;386(6624):502–506. doi: 10.1038/386502a0. [DOI] [PubMed] [Google Scholar]
  16. Kahn M. L., Zheng Y. W., Huang W., Bigornia V., Zeng D., Moff S., Farese R. V., Jr, Tam C., Coughlin S. R. A dual thrombin receptor system for platelet activation. Nature. 1998 Aug 13;394(6694):690–694. doi: 10.1038/29325. [DOI] [PubMed] [Google Scholar]
  17. Kitagawa H., Paulson J. C. Differential expression of five sialyltransferase genes in human tissues. J Biol Chem. 1994 Jul 8;269(27):17872–17878. [PubMed] [Google Scholar]
  18. Kolodziej P. A., Young R. A. Epitope tagging and protein surveillance. Methods Enzymol. 1991;194:508–519. doi: 10.1016/0076-6879(91)94038-e. [DOI] [PubMed] [Google Scholar]
  19. Kong W., McConalogue K., Khitin L. M., Hollenberg M. D., Payan D. G., Böhm S. K., Bunnett N. W. Luminal trypsin may regulate enterocytes through proteinase-activated receptor 2. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8884–8889. doi: 10.1073/pnas.94.16.8884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Landolt-Marticorena C., Reithmeier R. A. Asparagine-linked oligosaccharides are localized to single extracytosolic segments in multi-span membrane glycoproteins. Biochem J. 1994 Aug 15;302(Pt 1):253–260. doi: 10.1042/bj3020253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lerner D. J., Chen M., Tram T., Coughlin S. R. Agonist recognition by proteinase-activated receptor 2 and thrombin receptor. Importance of extracellular loop interactions for receptor function. J Biol Chem. 1996 Jun 14;271(24):13943–13947. [PubMed] [Google Scholar]
  22. Macfarlane S. R., Seatter M. J., Kanke T., Hunter G. D., Plevin R. Proteinase-activated receptors. Pharmacol Rev. 2001 Jun;53(2):245–282. [PubMed] [Google Scholar]
  23. Molino M., Barnathan E. S., Numerof R., Clark J., Dreyer M., Cumashi A., Hoxie J. A., Schechter N., Woolkalis M., Brass L. F. Interactions of mast cell tryptase with thrombin receptors and PAR-2. J Biol Chem. 1997 Feb 14;272(7):4043–4049. doi: 10.1074/jbc.272.7.4043. [DOI] [PubMed] [Google Scholar]
  24. NICKERSON M. Receptor occupancy and tissue response. Nature. 1956 Sep 29;178(4535):697–698. doi: 10.1038/178697b0. [DOI] [PubMed] [Google Scholar]
  25. Napoli C., Cicala C., Wallace J. L., de Nigris F., Santagada V., Caliendo G., Franconi F., Ignarro L. J., Cirino G. Protease-activated receptor-2 modulates myocardial ischemia-reperfusion injury in the rat heart. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3678–3683. doi: 10.1073/pnas.97.7.3678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nystedt S., Emilsson K., Larsson A. K., Strömbeck B., Sundelin J. Molecular cloning and functional expression of the gene encoding the human proteinase-activated receptor 2. Eur J Biochem. 1995 Aug 15;232(1):84–89. doi: 10.1111/j.1432-1033.1995.tb20784.x. [DOI] [PubMed] [Google Scholar]
  27. Opdenakker G., Rudd P. M., Ponting C. P., Dwek R. A. Concepts and principles of glycobiology. FASEB J. 1993 Nov;7(14):1330–1337. doi: 10.1096/fasebj.7.14.8224606. [DOI] [PubMed] [Google Scholar]
  28. Pang R. T., Ng S. S., Cheng C. H., Holtmann M. H., Miller L. J., Chow B. K. Role of N-linked glycosylation on the function and expression of the human secretin receptor. Endocrinology. 1999 Nov;140(11):5102–5111. doi: 10.1210/endo.140.11.7134. [DOI] [PubMed] [Google Scholar]
  29. Saifeddine M., Al-Ani B., Sandhu S., Wijesuriya S. J., Hollenberg M. D. Contractile actions of proteinase-activated receptor-derived polypeptides in guinea-pig gastric and lung parenchymal strips: evidence for distinct receptor systems. Br J Pharmacol. 2001 Jan;132(2):556–566. doi: 10.1038/sj.bjp.0703839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schechter N. M., Brass L. F., Lavker R. M., Jensen P. J. Reaction of mast cell proteases tryptase and chymase with protease activated receptors (PARs) on keratinocytes and fibroblasts. J Cell Physiol. 1998 Aug;176(2):365–373. doi: 10.1002/(SICI)1097-4652(199808)176:2<365::AID-JCP15>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  31. Steinhoff M., Vergnolle N., Young S. H., Tognetto M., Amadesi S., Ennes H. S., Trevisani M., Hollenberg M. D., Wallace J. L., Caughey G. H. Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat Med. 2000 Feb;6(2):151–158. doi: 10.1038/72247. [DOI] [PubMed] [Google Scholar]
  32. Takeuchi T., Harris J. L., Huang W., Yan K. W., Coughlin S. R., Craik C. S. Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J Biol Chem. 2000 Aug 25;275(34):26333–26342. doi: 10.1074/jbc.M002941200. [DOI] [PubMed] [Google Scholar]
  33. Vouret-Craviari V., Grall D., Chambard J. C., Rasmussen U. B., Pouysségur J., Van Obberghen-Schilling E. Post-translational and activation-dependent modifications of the G protein-coupled thrombin receptor. J Biol Chem. 1995 Apr 7;270(14):8367–8372. doi: 10.1074/jbc.270.14.8367. [DOI] [PubMed] [Google Scholar]
  34. Vu T. K., Hung D. T., Wheaton V. I., Coughlin S. R. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell. 1991 Mar 22;64(6):1057–1068. doi: 10.1016/0092-8674(91)90261-v. [DOI] [PubMed] [Google Scholar]
  35. Xu W. F., Andersen H., Whitmore T. E., Presnell S. R., Yee D. P., Ching A., Gilbert T., Davie E. W., Foster D. C. Cloning and characterization of human protease-activated receptor 4. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6642–6646. doi: 10.1073/pnas.95.12.6642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zhang Z., Austin S. C., Smyth E. M. Glycosylation of the human prostacyclin receptor: role in ligand binding and signal transduction. Mol Pharmacol. 2001 Sep;60(3):480–487. [PubMed] [Google Scholar]
  37. Zhou A. T., Assil I., Abou-Samra A. B. Role of asparagine-linked oligosaccharides in the function of the rat PTH/PTHrP receptor. Biochemistry. 2000 May 30;39(21):6514–6520. doi: 10.1021/bi992706f. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES