Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Dec 1;368(Pt 2):605–610. doi: 10.1042/BJ20021195

In vitro aggregation of the regulated secretory protein chromogranin A.

Renu K Jain 1, Wen Tzu Chang 1, Chitta Geetha 1, Paul B M Joyce 1, Sven-Ulrik Gorr 1
PMCID: PMC1222998  PMID: 12175332

Abstract

Aggregation chaperones, consisting of secretory proteins that contain a hexa-histidine epitope tag, enhance the calcium-induced aggregation of regulated secretory proteins and their sorting to secretory granules. The goal of this study was to gain a better understanding of this unusual aggregation mechanism. Hexa-histidine-epitope-tagged secreted alkaline phosphatase, an aggregation chaperone, enhanced the in vitro aggregation of chromogranin A in the presence of calcium, but not in the presence of magnesium or other divalent cations. As an exception, chromogranin was completely aggregated by zinc, even in the absence of the aggregation chaperone. In addition, fluorescence spectroscopy of the aggregation reaction mixture showed an increase in fluorescence intensity consistent with the formation of protein aggregates. The calcium-induced aggregation of chromogranin A was completely inhibited by 0.2% Triton X-100, suggesting that it involves hydrophobic interactions. In contrast, the detergent did not affect chaperone-enhanced aggregation, suggesting that this aggregation does not depend on hydrophobic interactions. EDTA-treated chaperone did not enhance chromogranin A aggregation, indicating that divalent cations are necessary for chaperone action. Although the structure of the aggregation chaperone was not important, the size of the chaperone was. Thus the free His-hexapeptide could not substitute for the aggregation chaperone. Based on these results, we propose that the hexa-histidine tag, in the context of a polypeptide, acts as a divalent cation-dependent nucleation site for chromogranin A aggregation.

Full Text

The Full Text of this article is available as a PDF (233.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arvan P., Castle D. Sorting and storage during secretory granule biogenesis: looking backward and looking forward. Biochem J. 1998 Jun 15;332(Pt 3):593–610. doi: 10.1042/bj3320593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bornhorst J. A., Falke J. J. Purification of proteins using polyhistidine affinity tags. Methods Enzymol. 2000;326:245–254. doi: 10.1016/s0076-6879(00)26058-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Canaff L., Brechler V., Reudelhuber T. L., Thibault G. Secretory granule targeting of atrial natriuretic peptide correlates with its calcium-mediated aggregation. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9483–9487. doi: 10.1073/pnas.93.18.9483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Colomer V., Kicska G. A., Rindler M. J. Secretory granule content proteins and the luminal domains of granule membrane proteins aggregate in vitro at mildly acidic pH. J Biol Chem. 1996 Jan 5;271(1):48–55. doi: 10.1074/jbc.271.1.48. [DOI] [PubMed] [Google Scholar]
  5. Cool D. R., Loh Y. P. Carboxypeptidase E is a sorting receptor for prohormones: binding and kinetic studies. Mol Cell Endocrinol. 1998 Apr 30;139(1-2):7–13. doi: 10.1016/s0303-7207(98)00081-1. [DOI] [PubMed] [Google Scholar]
  6. Cool D. R., Normant E., Shen F., Chen H. C., Pannell L., Zhang Y., Loh Y. P. Carboxypeptidase E is a regulated secretory pathway sorting receptor: genetic obliteration leads to endocrine disorders in Cpe(fat) mice. Cell. 1997 Jan 10;88(1):73–83. doi: 10.1016/s0092-8674(00)81860-7. [DOI] [PubMed] [Google Scholar]
  7. Cowley D. J., Moore Y. R., Darling D. S., Joyce P. B., Gorr S. U. N- and C-terminal domains direct cell type-specific sorting of chromogranin A to secretory granules. J Biol Chem. 2000 Mar 17;275(11):7743–7748. doi: 10.1074/jbc.275.11.7743. [DOI] [PubMed] [Google Scholar]
  8. Dannies P. S. Protein hormone storage in secretory granules: mechanisms for concentration and sorting. Endocr Rev. 1999 Feb;20(1):3–21. doi: 10.1210/edrv.20.1.0354. [DOI] [PubMed] [Google Scholar]
  9. Fasciotto B. H., Gorr S. U., Cohn D. V. Autocrine inhibition of parathyroid cell secretion requires proteolytic processing of chromogranin A. Bone Miner. 1992 Jun;17(3):323–333. doi: 10.1016/0169-6009(92)90783-a. [DOI] [PubMed] [Google Scholar]
  10. Gorr S. U., Hamilton J. W., Cohn D. V. Regulated, but not constitutive, secretory proteins bind porcine chymotrypsinogen. J Biol Chem. 1992 Oct 25;267(30):21595–21600. [PubMed] [Google Scholar]
  11. Gorr S. U., Jain R. K., Kuehn U., Joyce P. B., Cowley D. J. Comparative sorting of neuroendocrine secretory proteins: a search for common ground in a mosaic of sorting models and mechanisms. Mol Cell Endocrinol. 2001 Feb 14;172(1-2):1–6. doi: 10.1016/s0303-7207(00)00342-7. [DOI] [PubMed] [Google Scholar]
  12. Gorr S. U., Kumarasamy R., Dean W. L., Cohn D. V. New suggestions for the physiological role of secretory protein-I. Bone Miner. 1987 Jul;2(4):251–255. [PubMed] [Google Scholar]
  13. Gorr S. U., Moore Y. R. Sorting of a constitutive secretory protein to the regulated secretory pathway of exocrine cells. Biochem Biophys Res Commun. 1999 Apr 13;257(2):545–548. doi: 10.1006/bbrc.1999.0504. [DOI] [PubMed] [Google Scholar]
  14. Gorr S. U., Shioi J., Cohn D. V. Interaction of calcium with porcine adrenal chromogranin A (secretory protein-I) and chromogranin B (secretogranin I). Am J Physiol. 1989 Aug;257(2 Pt 1):E247–E254. doi: 10.1152/ajpendo.1989.257.2.E247. [DOI] [PubMed] [Google Scholar]
  15. Howell S. L., Tyhurst M., Duvefelt H., Andersson A., Hellerström C. Role of zinc and calcium in the formation and storage of insulin in the pancreatic beta-cell. Cell Tissue Res. 1978 Mar 31;188(1):107–118. doi: 10.1007/BF00220518. [DOI] [PubMed] [Google Scholar]
  16. Jain R. K., Joyce P. B., Gorr S. U. Aggregation chaperones enhance aggregation and storage of secretory proteins in endocrine cells. J Biol Chem. 2000 Sep 1;275(35):27032–27036. doi: 10.1074/jbc.M000095200. [DOI] [PubMed] [Google Scholar]
  17. Kelly R. B. Pathways of protein secretion in eukaryotes. Science. 1985 Oct 4;230(4721):25–32. doi: 10.1126/science.2994224. [DOI] [PubMed] [Google Scholar]
  18. Kuliawat R., Prabakaran D., Arvan P. Proinsulin endoproteolysis confers enhanced targeting of processed insulin to the regulated secretory pathway. Mol Biol Cell. 2000 Jun;11(6):1959–1972. doi: 10.1091/mbc.11.6.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Leblond F. A., Viau G., Lainé J., Lebel D. Reconstitution in vitro of the pH-dependent aggregation of pancreatic zymogens en route to the secretory granule: implication of GP-2. Biochem J. 1993 Apr 1;291(Pt 1):289–296. doi: 10.1042/bj2910289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Linard C. G., Tadros H., Sirois F., Mbikay M. Calcium-induced aggregation of neuroendocrine protein 7B2 in vitro and its modulation by ATP. Mol Cell Biochem. 1995 Oct 4;151(1):39–47. doi: 10.1007/BF01076894. [DOI] [PubMed] [Google Scholar]
  21. Mains R. E., Cullen E. I., May V., Eipper B. A. The role of secretory granules in peptide biosynthesis. Ann N Y Acad Sci. 1987;493:278–291. doi: 10.1111/j.1749-6632.1987.tb27213.x. [DOI] [PubMed] [Google Scholar]
  22. Martens G. J., Braks J. A., Eib D. W., Zhou Y., Lindberg I. The neuroendocrine polypeptide 7B2 is an endogenous inhibitor of prohormone convertase PC2. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5784–5787. doi: 10.1073/pnas.91.13.5784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Natori S., Huttner W. B. Chromogranin B (secretogranin I) promotes sorting to the regulated secretory pathway of processing intermediates derived from a peptide hormone precursor. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4431–4436. doi: 10.1073/pnas.93.9.4431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Navaratnam N., Stinson R. A. Modulation of activity of human alkaline phosphatases by Mg2+ and thiol compounds. Biochim Biophys Acta. 1986 Jan 17;869(1):99–105. doi: 10.1016/0167-4838(86)90315-8. [DOI] [PubMed] [Google Scholar]
  25. Oliver P. M., Fox J. E., Kim R., Rockman H. A., Kim H. S., Reddick R. L., Pandey K. N., Milgram S. L., Smithies O., Maeda N. Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14730–14735. doi: 10.1073/pnas.94.26.14730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rindler M. J. Carboxypeptidase E, a peripheral membrane protein implicated in the targeting of hormones to secretory granules, co-aggregates with granule content proteins at acidic pH. J Biol Chem. 1998 Nov 20;273(47):31180–31185. doi: 10.1074/jbc.273.47.31180. [DOI] [PubMed] [Google Scholar]
  27. Rivera V. M., Wang X., Wardwell S., Courage N. L., Volchuk A., Keenan T., Holt D. A., Gilman M., Orci L., Cerasoli F., Jr Regulation of protein secretion through controlled aggregation in the endoplasmic reticulum. Science. 2000 Feb 4;287(5454):826–830. doi: 10.1126/science.287.5454.826. [DOI] [PubMed] [Google Scholar]
  28. Somlyo A. V., Broderick R., Shuman H., Buhle E. L., Jr, Somlyo A. P. Atrial-specific granules in situ have high calcium content, are acidic, and maintain anion gradients. Proc Natl Acad Sci U S A. 1988 Aug;85(16):6222–6226. doi: 10.1073/pnas.85.16.6222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Song L., Fricker L. D. Calcium- and pH-dependent aggregation of carboxypeptidase E. J Biol Chem. 1995 Apr 7;270(14):7963–7967. doi: 10.1074/jbc.270.14.7963. [DOI] [PubMed] [Google Scholar]
  30. Thibault G., Doubell A. F. Binding and aggregation of pro-atrial natriuretic factor by calcium. Am J Physiol. 1992 Apr;262(4 Pt 1):C907–C915. doi: 10.1152/ajpcell.1992.262.4.C907. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES