Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Dec 1;368(Pt 2):527–534. doi: 10.1042/BJ20021133

Interactions between two fission yeast serine/arginine-rich proteins and their modulation by phosphorylation.

Zhaohua Tang 1, Norbert F Käufer 1, Ren-Jang Lin 1
PMCID: PMC1223001  PMID: 12186627

Abstract

The unexpected low number of genes in the human genome has triggered increasing attention to alternative pre-mRNA splicing, and serine/arginine-rich (SR) proteins have been correlated with the complex alternative splicing that is a characteristic of metazoans. SR proteins interact with RNA and splicing protein factors, and they also undergo reversible phosphorylation, thereby regulating constitutive and alternative splicing in mammals and Drosophila. However, it is not clear whether the features of SR proteins and alternative splicing are present in simple and genetically tractable organisms, such as yeasts. In the present study, we show that the SR-like proteins Srp1 and Srp2, found in the fission yeast Schizosaccharomyces pombe, interact with each other and the interaction is modulated by protein phosphorylation. By using Srp1 as bait in a yeast two-hybrid analysis, we specifically isolated Srp2 from a random screen. This Srp interaction was confirmed by a glutathione-S-transferase pull-down assay. We also found that the Srp1-Srp2 complex was phosphorylated at a reduced efficiency by a fission yeast SR-specific kinase, Dis1-suppression kinase (Dsk1). Conversely, Dsk1-mediated phosphorylation inhibited the formation of the Srp complex. These findings offer the first example in fission yeast for interactions between SR-related proteins and the modulation of the interactions by specific protein phosphorylation, suggesting that a mammalian-like SR protein function may exist in fission yeast.

Full Text

The Full Text of this article is available as a PDF (258.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Black D. L. Finding splice sites within a wilderness of RNA. RNA. 1995 Oct;1(8):763–771. [PMC free article] [PubMed] [Google Scholar]
  2. Black D. L. Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology. Cell. 2000 Oct 27;103(3):367–370. doi: 10.1016/s0092-8674(00)00128-8. [DOI] [PubMed] [Google Scholar]
  3. Colwill K., Pawson T., Andrews B., Prasad J., Manley J. L., Bell J. C., Duncan P. I. The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution. EMBO J. 1996 Jan 15;15(2):265–275. [PMC free article] [PubMed] [Google Scholar]
  4. Cáceres J. F., Screaton G. R., Krainer A. R. A specific subset of SR proteins shuttles continuously between the nucleus and the cytoplasm. Genes Dev. 1998 Jan 1;12(1):55–66. doi: 10.1101/gad.12.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Du C., McGuffin M. E., Dauwalder B., Rabinow L., Mattox W. Protein phosphorylation plays an essential role in the regulation of alternative splicing and sex determination in Drosophila. Mol Cell. 1998 Dec;2(6):741–750. doi: 10.1016/s1097-2765(00)80289-0. [DOI] [PubMed] [Google Scholar]
  6. Fields S., Song O. A novel genetic system to detect protein-protein interactions. Nature. 1989 Jul 20;340(6230):245–246. doi: 10.1038/340245a0. [DOI] [PubMed] [Google Scholar]
  7. Fu X. D., Maniatis T. The 35-kDa mammalian splicing factor SC35 mediates specific interactions between U1 and U2 small nuclear ribonucleoprotein particles at the 3' splice site. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1725–1729. doi: 10.1073/pnas.89.5.1725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fu X. D. The superfamily of arginine/serine-rich splicing factors. RNA. 1995 Sep;1(7):663–680. [PMC free article] [PubMed] [Google Scholar]
  9. Ge H., Manley J. L. A protein factor, ASF, controls cell-specific alternative splicing of SV40 early pre-mRNA in vitro. Cell. 1990 Jul 13;62(1):25–34. doi: 10.1016/0092-8674(90)90236-8. [DOI] [PubMed] [Google Scholar]
  10. Goffeau A., Barrell B. G., Bussey H., Davis R. W., Dujon B., Feldmann H., Galibert F., Hoheisel J. D., Jacq C., Johnston M. Life with 6000 genes. Science. 1996 Oct 25;274(5287):546, 563-7. doi: 10.1126/science.274.5287.546. [DOI] [PubMed] [Google Scholar]
  11. Graveley B. R. Alternative splicing: increasing diversity in the proteomic world. Trends Genet. 2001 Feb;17(2):100–107. doi: 10.1016/s0168-9525(00)02176-4. [DOI] [PubMed] [Google Scholar]
  12. Gross T., Lützelberger M., Weigmann H., Klingenhoff A., Shenoy S., Käufer N. F. Functional analysis of the fission yeast Prp4 protein kinase involved in pre-mRNA splicing and isolation of a putative mammalian homologue. Nucleic Acids Res. 1997 Mar 1;25(5):1028–1035. doi: 10.1093/nar/25.5.1028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gross T., Richert K., Mierke C., Lützelberger M., Käufer N. F. Identification and characterization of srp1, a gene of fission yeast encoding a RNA binding domain and a RS domain typical of SR splicing factors. Nucleic Acids Res. 1998 Jan 15;26(2):505–511. doi: 10.1093/nar/26.2.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gui J. F., Lane W. S., Fu X. D. A serine kinase regulates intracellular localization of splicing factors in the cell cycle. Nature. 1994 Jun 23;369(6482):678–682. doi: 10.1038/369678a0. [DOI] [PubMed] [Google Scholar]
  15. Habara Y., Urushiyama S., Tani T., Ohshima Y. The fission yeast prp10(+) gene involved in pre-mRNA splicing encodes a homologue of highly conserved splicing factor, SAP155. Nucleic Acids Res. 1998 Dec 15;26(24):5662–5669. doi: 10.1093/nar/26.24.5662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hastings M. L., Krainer A. R. Pre-mRNA splicing in the new millennium. Curr Opin Cell Biol. 2001 Jun;13(3):302–309. doi: 10.1016/s0955-0674(00)00212-x. [DOI] [PubMed] [Google Scholar]
  17. James P., Halladay J., Craig E. A. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics. 1996 Dec;144(4):1425–1436. doi: 10.1093/genetics/144.4.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jans D. A., Hübner S. Regulation of protein transport to the nucleus: central role of phosphorylation. Physiol Rev. 1996 Jul;76(3):651–685. doi: 10.1152/physrev.1996.76.3.651. [DOI] [PubMed] [Google Scholar]
  19. Kataoka N., Bachorik J. L., Dreyfuss G. Transportin-SR, a nuclear import receptor for SR proteins. J Cell Biol. 1999 Jun 14;145(6):1145–1152. doi: 10.1083/jcb.145.6.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Krainer A. R., Conway G. C., Kozak D. Purification and characterization of pre-mRNA splicing factor SF2 from HeLa cells. Genes Dev. 1990 Jul;4(7):1158–1171. doi: 10.1101/gad.4.7.1158. [DOI] [PubMed] [Google Scholar]
  21. Käufer N. F., Potashkin J. Analysis of the splicing machinery in fission yeast: a comparison with budding yeast and mammals. Nucleic Acids Res. 2000 Aug 15;28(16):3003–3010. doi: 10.1093/nar/28.16.3003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Käufer N. F., Simanis V., Nurse P. Fission yeast Schizosaccharomyces pombe correctly excises a mammalian RNA transcript intervening sequence. Nature. 1985 Nov 7;318(6041):78–80. doi: 10.1038/318078a0. [DOI] [PubMed] [Google Scholar]
  23. Lander E. S., Linton L. M., Birren B., Nusbaum C., Zody M. C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860–921. doi: 10.1038/35057062. [DOI] [PubMed] [Google Scholar]
  24. Lützelberger M., Gross T., Käufer N. F. Srp2, an SR protein family member of fission yeast: in vivo characterization of its modular domains. Nucleic Acids Res. 1999 Jul 1;27(13):2618–2626. doi: 10.1093/nar/27.13.2618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Manley J. L., Tacke R. SR proteins and splicing control. Genes Dev. 1996 Jul 1;10(13):1569–1579. doi: 10.1101/gad.10.13.1569. [DOI] [PubMed] [Google Scholar]
  26. Misteli T. RNA splicing: What has phosphorylation got to do with it? Curr Biol. 1999 Mar 25;9(6):R198–R200. doi: 10.1016/s0960-9822(99)80128-6. [DOI] [PubMed] [Google Scholar]
  27. Okazaki K., Niwa O. mRNAs encoding zinc finger protein isoforms are expressed by alternative splicing of an in-frame intron in fission yeast. DNA Res. 2000 Feb 28;7(1):27–30. doi: 10.1093/dnares/7.1.27. [DOI] [PubMed] [Google Scholar]
  28. Perutz M. F. Polar zippers: their role in human disease. Pharm Acta Helv. 1995 Mar;69(4):213–224. doi: 10.1016/0031-6865(95)00003-r. [DOI] [PubMed] [Google Scholar]
  29. Potashkin J., Naik K., Wentz-Hunter K. U2AF homolog required for splicing in vivo. Science. 1993 Oct 22;262(5133):573–575. doi: 10.1126/science.8211184. [DOI] [PubMed] [Google Scholar]
  30. Prabhala G., Rosenberg G. H., Käufer N. F. Architectural features of pre-mRNA introns in the fission yeast Schizosaccharomyces pombe. Yeast. 1992 Mar;8(3):171–182. doi: 10.1002/yea.320080303. [DOI] [PubMed] [Google Scholar]
  31. Romfo C. M., Wise J. A. Both the polypyrimidine tract and the 3' splice site function prior to the first step of splicing in fission yeast. Nucleic Acids Res. 1997 Nov 15;25(22):4658–4665. doi: 10.1093/nar/25.22.4658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Roth M. B., Zahler A. M., Stolk J. A. A conserved family of nuclear phosphoproteins localized to sites of polymerase II transcription. J Cell Biol. 1991 Nov;115(3):587–596. doi: 10.1083/jcb.115.3.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sanford J. R., Bruzik J. P. Developmental regulation of SR protein phosphorylation and activity. Genes Dev. 1999 Jun 15;13(12):1513–1518. doi: 10.1101/gad.13.12.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sharp P. A. Split genes and RNA splicing. Cell. 1994 Jun 17;77(6):805–815. doi: 10.1016/0092-8674(94)90130-9. [DOI] [PubMed] [Google Scholar]
  35. Staley J. P., Guthrie C. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell. 1998 Feb 6;92(3):315–326. doi: 10.1016/s0092-8674(00)80925-3. [DOI] [PubMed] [Google Scholar]
  36. Tacke R., Manley J. L. Determinants of SR protein specificity. Curr Opin Cell Biol. 1999 Jun;11(3):358–362. doi: 10.1016/S0955-0674(99)80050-7. [DOI] [PubMed] [Google Scholar]
  37. Takeuchi M., Yanagida M. A mitotic role for a novel fission yeast protein kinase dsk1 with cell cycle stage dependent phosphorylation and localization. Mol Biol Cell. 1993 Mar;4(3):247–260. doi: 10.1091/mbc.4.3.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tang Z., Kuo T., Shen J., Lin R. J. Biochemical and genetic conservation of fission yeast Dsk1 and human SR protein-specific kinase 1. Mol Cell Biol. 2000 Feb;20(3):816–824. doi: 10.1128/mcb.20.3.816-824.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tang Z., Yanagida M., Lin R. J. Fission yeast mitotic regulator Dsk1 is an SR protein-specific kinase. J Biol Chem. 1998 Mar 6;273(10):5963–5969. doi: 10.1074/jbc.273.10.5963. [DOI] [PubMed] [Google Scholar]
  40. Venter J. C., Adams M. D., Myers E. W., Li P. W., Mural R. J., Sutton G. G., Smith H. O., Yandell M., Evans C. A., Holt R. A. The sequence of the human genome. Science. 2001 Feb 16;291(5507):1304–1351. doi: 10.1126/science.1058040. [DOI] [PubMed] [Google Scholar]
  41. Wang H. Y., Lin W., Dyck J. A., Yeakley J. M., Songyang Z., Cantley L. C., Fu X. D. SRPK2: a differentially expressed SR protein-specific kinase involved in mediating the interaction and localization of pre-mRNA splicing factors in mammalian cells. J Cell Biol. 1998 Feb 23;140(4):737–750. doi: 10.1083/jcb.140.4.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wood V., Gwilliam R., Rajandream M-A, Lyne M., Lyne R., Stewart A., Sgouros J., Peat N., Hayles J., Baker S. The genome sequence of Schizosaccharomyces pombe. Nature. 2002 Feb 21;415(6874):871–880. doi: 10.1038/nature724. [DOI] [PubMed] [Google Scholar]
  43. Xiao S. H., Manley J. L. Phosphorylation of the ASF/SF2 RS domain affects both protein-protein and protein-RNA interactions and is necessary for splicing. Genes Dev. 1997 Feb 1;11(3):334–344. doi: 10.1101/gad.11.3.334. [DOI] [PubMed] [Google Scholar]
  44. Xiao S. H., Manley J. L. Phosphorylation-dephosphorylation differentially affects activities of splicing factor ASF/SF2. EMBO J. 1998 Nov 2;17(21):6359–6367. doi: 10.1093/emboj/17.21.6359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Yanagida Mitsuhiro. The model unicellular eukaryote, Schizosaccharomyces pombe. Genome Biol. 2002 Feb 22;3(3):COMMENT2003–COMMENT2003. doi: 10.1186/gb-2002-3-3-comment2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yeakley J. M., Tronchère H., Olesen J., Dyck J. A., Wang H. Y., Fu X. D. Phosphorylation regulates in vivo interaction and molecular targeting of serine/arginine-rich pre-mRNA splicing factors. J Cell Biol. 1999 May 3;145(3):447–455. doi: 10.1083/jcb.145.3.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Yun C. Y., Fu X. D. Conserved SR protein kinase functions in nuclear import and its action is counteracted by arginine methylation in Saccharomyces cerevisiae. J Cell Biol. 2000 Aug 21;150(4):707–718. doi: 10.1083/jcb.150.4.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zhang M. Q., Marr T. G. Fission yeast gene structure and recognition. Nucleic Acids Res. 1994 May 11;22(9):1750–1759. doi: 10.1093/nar/22.9.1750. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES