Abstract
Five markers of different kinds of oxidative damage to proteins [glutamic semialdehyde, aminoadipic semialdehyde, N (epsilon)-(carboxymethyl)lysine, N (epsilon)-(carboxyethyl)lysine and N (epsilon)-(malondialdehyde)lysine] and phospholipid fatty acyl composition were identified and measured in skeletal muscle mitochondria isolated from mice genetically engineered to underexpress or overexpress uncoupling protein 3 (UCP3). Mitochondria from UCP3-underexpressing mice had significantly higher levels of oxidative damage than wild-type controls, suggesting that UCP3 functions in vivo as part of the antioxidant defences of the cell, but mitochondria from UCP3-overexpressing mice had unaltered oxidative damage, suggesting that mild uncoupling in vivo beyond the normal basal uncoupling provides little protection against oxidative stress. Mitochondria from UCP3-underexpressing mice showed little change, but mitochondria from UCP3-overexpressing mice showed marked changes in mitochondrial phospholipid fatty acyl composition. These changes were very similar to those previously found to correlate with basal proton conductance in mitochondria from a range of species and treatments, suggesting that high protein expression, or some secondary result of uncoupling, may cause the observed correlation between basal proton conductance and phospholipid fatty acyl composition.
Full Text
The Full Text of this article is available as a PDF (162.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmed M. U., Brinkmann Frye E., Degenhardt T. P., Thorpe S. R., Baynes J. W. N-epsilon-(carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochem J. 1997 Jun 1;324(Pt 2):565–570. doi: 10.1042/bj3240565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arsenijevic D., Onuma H., Pecqueur C., Raimbault S., Manning B. S., Miroux B., Couplan E., Alves-Guerra M. C., Goubern M., Surwit R. Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat Genet. 2000 Dec;26(4):435–439. doi: 10.1038/82565. [DOI] [PubMed] [Google Scholar]
- Berlett B. S., Stadtman E. R. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem. 1997 Aug 15;272(33):20313–20316. doi: 10.1074/jbc.272.33.20313. [DOI] [PubMed] [Google Scholar]
- Boveris A., Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J. 1973 Jul;134(3):707–716. doi: 10.1042/bj1340707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boveris A., Oshino N., Chance B. The cellular production of hydrogen peroxide. Biochem J. 1972 Jul;128(3):617–630. doi: 10.1042/bj1280617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brand M. D., Brindle K. M., Buckingham J. A., Harper J. A., Rolfe D. F., Stuart J. A. The significance and mechanism of mitochondrial proton conductance. Int J Obes Relat Metab Disord. 1999 Jun;23 (Suppl 6):S4–11. doi: 10.1038/sj.ijo.0800936. [DOI] [PubMed] [Google Scholar]
- Brand M. D., Couture P., Else P. L., Withers K. W., Hulbert A. J. Evolution of energy metabolism. Proton permeability of the inner membrane of liver mitochondria is greater in a mammal than in a reptile. Biochem J. 1991 Apr 1;275(Pt 1):81–86. doi: 10.1042/bj2750081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brookes P. S., Buckingham J. A., Tenreiro A. M., Hulbert A. J., Brand M. D. The proton permeability of the inner membrane of liver mitochondria from ectothermic and endothermic vertebrates and from obese rats: correlations with standard metabolic rate and phospholipid fatty acid composition. Comp Biochem Physiol B Biochem Mol Biol. 1998 Feb;119(2):325–334. doi: 10.1016/s0305-0491(97)00357-x. [DOI] [PubMed] [Google Scholar]
- Brookes P. S., Hulbert A. J., Brand M. D. The proton permeability of liposomes made from mitochondrial inner membrane phospholipids: no effect of fatty acid composition. Biochim Biophys Acta. 1997 Dec 4;1330(2):157–164. doi: 10.1016/s0005-2736(97)00160-0. [DOI] [PubMed] [Google Scholar]
- Bézaire V., Hofmann W., Kramer J. K., Kozak L. P., Harper M. E. Effects of fasting on muscle mitochondrial energetics and fatty acid metabolism in Ucp3(-/-) and wild-type mice. Am J Physiol Endocrinol Metab. 2001 Nov;281(5):E975–E982. doi: 10.1152/ajpendo.2001.281.5.E975. [DOI] [PubMed] [Google Scholar]
- Cadenas S., Buckingham J. A., Samec S., Seydoux J., Din N., Dulloo A. G., Brand M. D. UCP2 and UCP3 rise in starved rat skeletal muscle but mitochondrial proton conductance is unchanged. FEBS Lett. 1999 Dec 3;462(3):257–260. doi: 10.1016/s0014-5793(99)01540-9. [DOI] [PubMed] [Google Scholar]
- Cadenas Susana, Echtay Karim S., Harper James A., Jekabsons Mika B., Buckingham Julie A., Grau Evelyn, Abuin Alejandro, Chapman Helen, Clapham John C., Brand Martin D. The basal proton conductance of skeletal muscle mitochondria from transgenic mice overexpressing or lacking uncoupling protein-3. J Biol Chem. 2001 Nov 13;277(4):2773–2778. doi: 10.1074/jbc.M109736200. [DOI] [PubMed] [Google Scholar]
- Clapham J. C., Arch J. R., Chapman H., Haynes A., Lister C., Moore G. B., Piercy V., Carter S. A., Lehner I., Smith S. A. Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean. Nature. 2000 Jul 27;406(6794):415–418. doi: 10.1038/35019082. [DOI] [PubMed] [Google Scholar]
- Echtay Karim S., Roussel Damien, St-Pierre Julie, Jekabsons Mika B., Cadenas Susana, Stuart Jeff A., Harper James A., Roebuck Stephen J., Morrison Alastair, Pickering Susan. Superoxide activates mitochondrial uncoupling proteins. Nature. 2002 Jan 3;415(6867):96–99. doi: 10.1038/415096a. [DOI] [PubMed] [Google Scholar]
- Gong D. W., Monemdjou S., Gavrilova O., Leon L. R., Marcus-Samuels B., Chou C. J., Everett C., Kozak L. P., Li C., Deng C. Lack of obesity and normal response to fasting and thyroid hormone in mice lacking uncoupling protein-3. J Biol Chem. 2000 May 26;275(21):16251–16257. doi: 10.1074/jbc.M910177199. [DOI] [PubMed] [Google Scholar]
- Hafner R. P., Nobes C. D., McGown A. D., Brand M. D. Altered relationship between protonmotive force and respiration rate in non-phosphorylating liver mitochondria isolated from rats of different thyroid hormone status. Eur J Biochem. 1988 Dec 15;178(2):511–518. doi: 10.1111/j.1432-1033.1988.tb14477.x. [DOI] [PubMed] [Google Scholar]
- Harper James A., Stuart Jeff A., Jekabsons Mika B., Roussel Damien, Brindle Kevin M., Dickinson Keith, Jones Robert B., Brand Martin D. Artifactual uncoupling by uncoupling protein 3 in yeast mitochondria at the concentrations found in mouse and rat skeletal-muscle mitochondria. Biochem J. 2002 Jan 1;361(Pt 1):49–56. doi: 10.1042/0264-6021:3610049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haslam J. M., Proudlock J. W., Linnane A. W. Biogenesis of mitochondria. 20. The effects of altered membrane lipid composition on mitochondrial oxidative phosphorylation in Saccharomyces cerevisiae. J Bioenerg. 1971 Dec;2(5):351–370. doi: 10.1007/BF01963830. [DOI] [PubMed] [Google Scholar]
- Hoch F. L. Cardiolipins and biomembrane function. Biochim Biophys Acta. 1992 Mar 26;1113(1):71–133. doi: 10.1016/0304-4157(92)90035-9. [DOI] [PubMed] [Google Scholar]
- Hoch F. L. Cardiolipins and mitochondrial proton-selective leakage. J Bioenerg Biomembr. 1998 Dec;30(6):511–532. doi: 10.1023/a:1020576315771. [DOI] [PubMed] [Google Scholar]
- Hoch F. L. Lipids and thyroid hormones. Prog Lipid Res. 1988;27(3):199–270. doi: 10.1016/0163-7827(88)90013-6. [DOI] [PubMed] [Google Scholar]
- Hulbert A. J., Else P. L., Manolis S. C., Brand M. D. Proton leak in hepatocytes and liver mitochondria from archosaurs (crocodiles) and allometric relationships for ectotherms. J Comp Physiol B. 2002 May 4;172(5):387–397. doi: 10.1007/s00360-002-0264-1. [DOI] [PubMed] [Google Scholar]
- Hulbert A. J. Thyroid hormones and their effects: a new perspective. Biol Rev Camb Philos Soc. 2000 Nov;75(4):519–631. doi: 10.1017/s146479310000556x. [DOI] [PubMed] [Google Scholar]
- Klingenberg M., Huang S. G. Structure and function of the uncoupling protein from brown adipose tissue. Biochim Biophys Acta. 1999 Jan 8;1415(2):271–296. doi: 10.1016/s0005-2736(98)00232-6. [DOI] [PubMed] [Google Scholar]
- Knecht K. J., Dunn J. A., McFarland K. F., McCance D. R., Lyons T. J., Thorpe S. R., Baynes J. W. Effect of diabetes and aging on carboxymethyllysine levels in human urine. Diabetes. 1991 Feb;40(2):190–196. doi: 10.2337/diab.40.2.190. [DOI] [PubMed] [Google Scholar]
- Korshunov S. S., Korkina O. V., Ruuge E. K., Skulachev V. P., Starkov A. A. Fatty acids as natural uncouplers preventing generation of O2.- and H2O2 by mitochondria in the resting state. FEBS Lett. 1998 Sep 18;435(2-3):215–218. doi: 10.1016/s0014-5793(98)01073-4. [DOI] [PubMed] [Google Scholar]
- Korshunov S. S., Skulachev V. P., Starkov A. A. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 1997 Oct 13;416(1):15–18. doi: 10.1016/s0014-5793(97)01159-9. [DOI] [PubMed] [Google Scholar]
- Li L. X., Skorpen F., Egeberg K., Jørgensen I. H., Grill V. Uncoupling protein-2 participates in cellular defense against oxidative stress in clonal beta-cells. Biochem Biophys Res Commun. 2001 Mar 23;282(1):273–277. doi: 10.1006/bbrc.2001.4577. [DOI] [PubMed] [Google Scholar]
- Liu S. S. Generating, partitioning, targeting and functioning of superoxide in mitochondria. Biosci Rep. 1997 Jun;17(3):259–272. doi: 10.1023/a:1027328510931. [DOI] [PubMed] [Google Scholar]
- Loschen G., Flohé L., Chance B. Respiratory chain linked H(2)O(2) production in pigeon heart mitochondria. FEBS Lett. 1971 Nov 1;18(2):261–264. doi: 10.1016/0014-5793(71)80459-3. [DOI] [PubMed] [Google Scholar]
- Pamplona R., Portero-Otín M., Requena J. R., Thorpe S. R., Herrero A., Barja G. A low degree of fatty acid unsaturation leads to lower lipid peroxidation and lipoxidation-derived protein modification in heart mitochondria of the longevous pigeon than in the short-lived rat. Mech Ageing Dev. 1999 Jan 15;106(3):283–296. doi: 10.1016/s0047-6374(98)00121-3. [DOI] [PubMed] [Google Scholar]
- Pamplona R., Portero-Otín M., Riba D., Requena J. R., Thorpe S. R., López-Torres M., Barja G. Low fatty acid unsaturation: a mechanism for lowered lipoperoxidative modification of tissue proteins in mammalian species with long life spans. J Gerontol A Biol Sci Med Sci. 2000 Jun;55(6):B286–B291. doi: 10.1093/gerona/55.6.b286. [DOI] [PubMed] [Google Scholar]
- Pamplona R., Portero-Otín M., Riba D., Ruiz C., Prat J., Bellmunt M. J., Barja G. Mitochondrial membrane peroxidizability index is inversely related to maximum life span in mammals. J Lipid Res. 1998 Oct;39(10):1989–1994. [PubMed] [Google Scholar]
- Papa S., Skulachev V. P. Reactive oxygen species, mitochondria, apoptosis and aging. Mol Cell Biochem. 1997 Sep;174(1-2):305–319. [PubMed] [Google Scholar]
- Pehowich D. J. Thyroid hormone status and membrane n-3 fatty acid content influence mitochondrial proton leak. Biochim Biophys Acta. 1999 Apr 21;1411(1):192–200. doi: 10.1016/s0005-2728(99)00041-9. [DOI] [PubMed] [Google Scholar]
- Porter R. K., Hulbert A. J., Brand M. D. Allometry of mitochondrial proton leak: influence of membrane surface area and fatty acid composition. Am J Physiol. 1996 Dec;271(6 Pt 2):R1550–R1560. doi: 10.1152/ajpregu.1996.271.6.R1550. [DOI] [PubMed] [Google Scholar]
- Requena J. R., Chao C. C., Levine R. L., Stadtman E. R. Glutamic and aminoadipic semialdehydes are the main carbonyl products of metal-catalyzed oxidation of proteins. Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):69–74. doi: 10.1073/pnas.011526698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Requena J. R., Fu M. X., Ahmed M. U., Jenkins A. J., Lyons T. J., Baynes J. W., Thorpe S. R. Quantification of malondialdehyde and 4-hydroxynonenal adducts to lysine residues in native and oxidized human low-density lipoprotein. Biochem J. 1997 Feb 15;322(Pt 1):317–325. doi: 10.1042/bj3220317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rolfe D. F., Newman J. M., Buckingham J. A., Clark M. G., Brand M. D. Contribution of mitochondrial proton leak to respiration rate in working skeletal muscle and liver and to SMR. Am J Physiol. 1999 Mar;276(3 Pt 1):C692–C699. doi: 10.1152/ajpcell.1999.276.3.C692. [DOI] [PubMed] [Google Scholar]
- Stuart J. A., Cadenas S., Jekabsons M. B., Roussel D., Brand M. D. Mitochondrial proton leak and the uncoupling protein 1 homologues. Biochim Biophys Acta. 2001 Mar 1;1504(1):144–158. doi: 10.1016/s0005-2728(00)00243-7. [DOI] [PubMed] [Google Scholar]
- Vidal-Puig A. J., Grujic D., Zhang C. Y., Hagen T., Boss O., Ido Y., Szczepanik A., Wade J., Mootha V., Cortright R. Energy metabolism in uncoupling protein 3 gene knockout mice. J Biol Chem. 2000 May 26;275(21):16258–16266. doi: 10.1074/jbc.M910179199. [DOI] [PubMed] [Google Scholar]
- WITTING L. A., HORWITT M. K. EFFECT OF DEGREE OF FATTY ACID UNSATURATION IN TOCOPHEROL DEFICIENCY-INDUCED CREATINURIA. J Nutr. 1964 Jan;82:19–33. doi: 10.1093/jn/82.1.19. [DOI] [PubMed] [Google Scholar]