Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Dec 1;368(Pt 2):555–563. doi: 10.1042/BJ20020496

COUP-TF (chicken ovalbumin upstream promoter transcription factor)-interacting protein 1 (CTIP1) is a sequence-specific DNA binding protein.

Dorina Avram 1, Andrew Fields 1, Thanaset Senawong 1, Acharawan Topark-Ngarm 1, Mark Leid 1
PMCID: PMC1223006  PMID: 12196208

Abstract

Chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting proteins 1 and 2 [CTIP1/Evi9/B cell leukaemia (Bcl) l1a and CTIP2/Bcl11b respectively] are highly related C(2)H(2) zinc finger proteins that are abundantly expressed in brain and the immune system, and are associated with immune system malignancies. A selection procedure was employed to isolate high-affinity DNA binding sites for CTIP1. The core binding site on DNA identified in these studies, 5'-GGCCGG-3' (upper strand), is highly related to the canonical GC box and was bound by a CTIP1 oligomeric complex(es) in vitro. Furthermore, both CTIP1 and CTIP2 repressed transcription of a reporter gene harbouring a multimerized CTIP binding site, and this repression was neither reversed by trichostatin A (an inhibitor of known class I and II histone deacetylases) nor stimulated by co-transfection of a COUP-TF family member. These results demonstrate that CTIP1 is a sequence-specific DNA binding protein and a bona fide transcriptional repressor that is capable of functioning independently of COUP-TF family members. These findings may be relevant to the physiological and/or pathological action(s) of CTIPs in cells that do not express COUP-TF family members, such as cells of the haematopoietic and immune systems.

Full Text

The Full Text of this article is available as a PDF (297.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avram D., Bakalinsky A. T. SSU1 encodes a plasma membrane protein with a central role in a network of proteins conferring sulfite tolerance in Saccharomyces cerevisiae. J Bacteriol. 1997 Sep;179(18):5971–5974. doi: 10.1128/jb.179.18.5971-5974.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Avram D., Fields A., Pretty On Top K., Nevrivy D. J., Ishmael J. E., Leid M. Isolation of a novel family of C(2)H(2) zinc finger proteins implicated in transcriptional repression mediated by chicken ovalbumin upstream promoter transcription factor (COUP-TF) orphan nuclear receptors. J Biol Chem. 2000 Apr 7;275(14):10315–10322. doi: 10.1074/jbc.275.14.10315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Avram D., Ishmael J. E., Nevrivy D. J., Peterson V. J., Lee S. H., Dowell P., Leid M. Heterodimeric interactions between chicken ovalbumin upstream promoter-transcription factor family members ARP1 and ear2. J Biol Chem. 1999 May 14;274(20):14331–14336. doi: 10.1074/jbc.274.20.14331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Avram D., Leid M., Bakalinsky A. T. Fzf1p of Saccharomyces cerevisiae is a positive regulator of SSU1 transcription and its first zinc finger region is required for DNA binding. Yeast. 1999 Apr;15(6):473–480. doi: 10.1002/(SICI)1097-0061(199904)15:6<473::AID-YEA388>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  5. Becker K. G., Lee I. J., Nagle J. W., Canning R. D., Gado A. M., Torres R., Polymeropoulos M. H., Massa P. T., Biddison W. E., Drew P. D. C2H2-171: a novel human cDNA representing a developmentally regulated POZ domain/zinc finger protein preferentially expressed in brain. Int J Dev Neurosci. 1997 Nov;15(7):891–899. doi: 10.1016/s0736-5748(97)00034-8. [DOI] [PubMed] [Google Scholar]
  6. Bellefroid E., Bourguignon C., Bouwmeester T., Rausch O., Blumberg B., Pieler T. Transcription regulation and alternative splicing of an early zygotic gene encoding two structurally distinct zinc finger proteins in Xenopus laevis. Mech Dev. 1997 Apr;63(1):99–108. doi: 10.1016/s0925-4773(97)00034-8. [DOI] [PubMed] [Google Scholar]
  7. Benson J. D., Lawande R., Howley P. M. Conserved interaction of the papillomavirus E2 transcriptional activator proteins with human and yeast TFIIB proteins. J Virol. 1997 Oct;71(10):8041–8047. doi: 10.1128/jvi.71.10.8041-8047.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Benuck M. L., Li Z., Childs G. Mutations that increase acidity enhance the transcriptional activity of the glutamine-rich activation domain in stage-specific activator protein. J Biol Chem. 1999 Sep 3;274(36):25419–25425. doi: 10.1074/jbc.274.36.25419. [DOI] [PubMed] [Google Scholar]
  9. Bernard O. A., Busson-LeConiat M., Ballerini P., Mauchauffé M., Della Valle V., Monni R., Nguyen Khac F., Mercher T., Penard-Lacronique V., Pasturaud P. A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia. 2001 Oct;15(10):1495–1504. doi: 10.1038/sj.leu.2402249. [DOI] [PubMed] [Google Scholar]
  10. Blake M. C., Jambou R. C., Swick A. G., Kahn J. W., Azizkhan J. C. Transcriptional initiation is controlled by upstream GC-box interactions in a TATAA-less promoter. Mol Cell Biol. 1990 Dec;10(12):6632–6641. doi: 10.1128/mcb.10.12.6632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Brown K. E., Guest S. S., Smale S. T., Hahm K., Merkenschlager M., Fisher A. G. Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell. 1997 Dec 12;91(6):845–854. doi: 10.1016/s0092-8674(00)80472-9. [DOI] [PubMed] [Google Scholar]
  12. Böhm S., Frishman D., Mewes H. W. Variations of the C2H2 zinc finger motif in the yeast genome and classification of yeast zinc finger proteins. Nucleic Acids Res. 1997 Jun 15;25(12):2464–2469. doi: 10.1093/nar/25.12.2464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chervitz S. A., Aravind L., Sherlock G., Ball C. A., Koonin E. V., Dwight S. S., Harris M. A., Dolinski K., Mohr S., Smith T. Comparison of the complete protein sets of worm and yeast: orthology and divergence. Science. 1998 Dec 11;282(5396):2022–2028. doi: 10.1126/science.282.5396.2022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chrispeels H. E., Oettinger H., Janvier N., Tague B. W. AtZFP1, encoding Arabidopsis thaliana C2H2 zinc-finger protein 1, is expressed downstream of photomorphogenic activation. Plant Mol Biol. 2000 Jan;42(2):279–290. doi: 10.1023/a:1006352809700. [DOI] [PubMed] [Google Scholar]
  15. Clarke N. D., Berg J. M. Zinc fingers in Caenorhabditis elegans: finding families and probing pathways. Science. 1998 Dec 11;282(5396):2018–2022. doi: 10.1126/science.282.5396.2018. [DOI] [PubMed] [Google Scholar]
  16. D'Avino P. P., Thummel C. S. crooked legs encodes a family of zinc finger proteins required for leg morphogenesis and ecdysone-regulated gene expression during Drosophila metamorphosis. Development. 1998 May;125(9):1733–1745. doi: 10.1242/dev.125.9.1733. [DOI] [PubMed] [Google Scholar]
  17. Dowell P., Ishmael J. E., Avram D., Peterson V. J., Nevrivy D. J., Leid M. p300 functions as a coactivator for the peroxisome proliferator-activated receptor alpha. J Biol Chem. 1997 Dec 26;272(52):33435–33443. doi: 10.1074/jbc.272.52.33435. [DOI] [PubMed] [Google Scholar]
  18. Geiman D. E., Ton-That H., Johnson J. M., Yang V. W. Transactivation and growth suppression by the gut-enriched Krüppel-like factor (Krüppel-like factor 4) are dependent on acidic amino acid residues and protein-protein interaction. Nucleic Acids Res. 2000 Mar 1;28(5):1106–1113. doi: 10.1093/nar/28.5.1106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Georgopoulos K., Winandy S., Avitahl N. The role of the Ikaros gene in lymphocyte development and homeostasis. Annu Rev Immunol. 1997;15:155–176. doi: 10.1146/annurev.immunol.15.1.155. [DOI] [PubMed] [Google Scholar]
  20. Giorgi S., Polimeni M., Senni M. I., De Gregorio L., Dragani T. A., Molinaro M., Bouché M. Isolation and characterization of the murine zinc finger coding gene, ZT2: expression in normal and transformed myogenic cells. Gene. 1999 Apr 1;230(1):81–90. doi: 10.1016/s0378-1119(99)00044-x. [DOI] [PubMed] [Google Scholar]
  21. Hahm K., Cobb B. S., McCarty A. S., Brown K. E., Klug C. A., Lee R., Akashi K., Weissman I. L., Fisher A. G., Smale S. T. Helios, a T cell-restricted Ikaros family member that quantitatively associates with Ikaros at centromeric heterochromatin. Genes Dev. 1998 Mar 15;12(6):782–796. doi: 10.1101/gad.12.6.782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hamann L., Bayer K. U., Jensen K., Harbers K. Interaction of several related GC-box- and GT-box-binding proteins with the intronic enhancer is required for differential expression of the gb110 gene in embryonal carcinoma cells. Mol Cell Biol. 1994 Sep;14(9):5786–5793. doi: 10.1128/mcb.14.9.5786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hollemann T., Bellefroid E., Stick R., Pieler T. Zinc finger proteins in early Xenopus development. Int J Dev Biol. 1996 Feb;40(1):291–295. [PubMed] [Google Scholar]
  24. Imai S., Armstrong C. M., Kaeberlein M., Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000 Feb 17;403(6771):795–800. doi: 10.1038/35001622. [DOI] [PubMed] [Google Scholar]
  25. Imataka H., Sogawa K., Yasumoto K., Kikuchi Y., Sasano K., Kobayashi A., Hayami M., Fujii-Kuriyama Y. Two regulatory proteins that bind to the basic transcription element (BTE), a GC box sequence in the promoter region of the rat P-4501A1 gene. EMBO J. 1992 Oct;11(10):3663–3671. doi: 10.1002/j.1460-2075.1992.tb05451.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Jacobsen B. M., Skalnik D. G. YY1 binds five cis-elements and trans-activates the myeloid cell-restricted gp91(phox) promoter. J Biol Chem. 1999 Oct 15;274(42):29984–29993. doi: 10.1074/jbc.274.42.29984. [DOI] [PubMed] [Google Scholar]
  27. Jankowski J. M., Dixon G. H. The GC box as a silencer. Biosci Rep. 1987 Dec;7(12):955–963. doi: 10.1007/BF01122129. [DOI] [PubMed] [Google Scholar]
  28. Jheon A. H., Ganss B., Cheifetz S., Sodek J. Characterization of a novel KRAB/C2H2 zinc finger transcription factor involved in bone development. J Biol Chem. 2001 Feb 20;276(21):18282–18289. doi: 10.1074/jbc.M010885200. [DOI] [PubMed] [Google Scholar]
  29. Jia Y., Xie G., McDermott J. B., Aamodt E. The C. elegans gene pag-3 is homologous to the zinc finger proto-oncogene gfi-1. Development. 1997 May;124(10):2063–2073. doi: 10.1242/dev.124.10.2063. [DOI] [PubMed] [Google Scholar]
  30. Kelley C. M., Ikeda T., Koipally J., Avitahl N., Wu L., Georgopoulos K., Morgan B. A. Helios, a novel dimerization partner of Ikaros expressed in the earliest hematopoietic progenitors. Curr Biol. 1998 Apr 23;8(9):508–515. doi: 10.1016/s0960-9822(98)70202-7. [DOI] [PubMed] [Google Scholar]
  31. Kennedy D., Ramsdale T., Mattick J., Little M. An RNA recognition motif in Wilms' tumour protein (WT1) revealed by structural modelling. Nat Genet. 1996 Mar;12(3):329–331. doi: 10.1038/ng0396-329. [DOI] [PubMed] [Google Scholar]
  32. Kim J., Sif S., Jones B., Jackson A., Koipally J., Heller E., Winandy S., Viel A., Sawyer A., Ikeda T. Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes. Immunity. 1999 Mar;10(3):345–355. doi: 10.1016/s1074-7613(00)80034-5. [DOI] [PubMed] [Google Scholar]
  33. Klein T., Campos-Ortega J. A. klumpfuss, a Drosophila gene encoding a member of the EGR family of transcription factors, is involved in bristle and leg development. Development. 1997 Aug;124(16):3123–3134. doi: 10.1242/dev.124.16.3123. [DOI] [PubMed] [Google Scholar]
  34. Koipally J., Renold A., Kim J., Georgopoulos K. Repression by Ikaros and Aiolos is mediated through histone deacetylase complexes. EMBO J. 1999 Jun 1;18(11):3090–3100. doi: 10.1093/emboj/18.11.3090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Letovsky J., Dynan W. S. Measurement of the binding of transcription factor Sp1 to a single GC box recognition sequence. Nucleic Acids Res. 1989 Apr 11;17(7):2639–2653. doi: 10.1093/nar/17.7.2639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Li J. Y., English M. A., Ball H. J., Yeyati P. L., Waxman S., Licht J. D. Sequence-specific DNA binding and transcriptional regulation by the promyelocytic leukemia zinc finger protein. J Biol Chem. 1997 Sep 5;272(36):22447–22455. doi: 10.1074/jbc.272.36.22447. [DOI] [PubMed] [Google Scholar]
  37. Liang H., Guo W., Nagarajan L. Chromosomal mapping and genomic organization of an evolutionarily conserved zinc finger gene ZNF277. Genomics. 2000 Jun 1;66(2):226–228. doi: 10.1006/geno.2000.6198. [DOI] [PubMed] [Google Scholar]
  38. Luo M., Bilodeau P., Koltunow A., Dennis E. S., Peacock W. J., Chaudhury A. M. Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):296–301. doi: 10.1073/pnas.96.1.296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Mackay J. P., Crossley M. Zinc fingers are sticking together. Trends Biochem Sci. 1998 Jan;23(1):1–4. doi: 10.1016/s0968-0004(97)01168-7. [DOI] [PubMed] [Google Scholar]
  40. Mitelman F., Mertens F., Johansson B. A breakpoint map of recurrent chromosomal rearrangements in human neoplasia. Nat Genet. 1997 Apr;15(Spec No):417–474. doi: 10.1038/ng0497supp-417. [DOI] [PubMed] [Google Scholar]
  41. Molnár A., Georgopoulos K. The Ikaros gene encodes a family of functionally diverse zinc finger DNA-binding proteins. Mol Cell Biol. 1994 Dec;14(12):8292–8303. doi: 10.1128/mcb.14.12.8292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Morgan B., Sun L., Avitahl N., Andrikopoulos K., Ikeda T., Gonzales E., Wu P., Neben S., Georgopoulos K. Aiolos, a lymphoid restricted transcription factor that interacts with Ikaros to regulate lymphocyte differentiation. EMBO J. 1997 Apr 15;16(8):2004–2013. doi: 10.1093/emboj/16.8.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Nakamura T., Yamazaki Y., Saiki Y., Moriyama M., Largaespada D. A., Jenkins N. A., Copeland N. G. Evi9 encodes a novel zinc finger protein that physically interacts with BCL6, a known human B-cell proto-oncogene product. Mol Cell Biol. 2000 May;20(9):3178–3186. doi: 10.1128/mcb.20.9.3178-3186.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Nevrivy D. J., Peterson V. J., Avram D., Ishmael J. E., Hansen S. G., Dowell P., Hruby D. E., Dawson M. I., Leid M. Interaction of GRASP, a protein encoded by a novel retinoic acid-induced gene, with members of the cytohesin family of guanine nucleotide exchange factors. J Biol Chem. 2000 Jun 2;275(22):16827–16836. doi: 10.1074/jbc.275.22.16827. [DOI] [PubMed] [Google Scholar]
  45. Pabo C. O., Nekludova L. Geometric analysis and comparison of protein-DNA interfaces: why is there no simple code for recognition? J Mol Biol. 2000 Aug 18;301(3):597–624. doi: 10.1006/jmbi.2000.3918. [DOI] [PubMed] [Google Scholar]
  46. Payen E., Verkerk T., Michalovich D., Dreyer S. D., Winterpacht A., Lee B., De Zeeuw C. I., Grosveld F., Galjart N. The centromeric/nucleolar chromatin protein ZFP-37 may function to specify neuronal nuclear domains. J Biol Chem. 1998 Apr 10;273(15):9099–9109. doi: 10.1074/jbc.273.15.9099. [DOI] [PubMed] [Google Scholar]
  47. Perdomo J., Holmes M., Chong B., Crossley M. Eos and pegasus, two members of the Ikaros family of proteins with distinct DNA binding activities. J Biol Chem. 2000 Dec 8;275(49):38347–38354. doi: 10.1074/jbc.M005457200. [DOI] [PubMed] [Google Scholar]
  48. Saiki Y., Yamazaki Y., Yoshida M., Katoh O., Nakamura T. Human EVI9, a homologue of the mouse myeloid leukemia gene, is expressed in the hematopoietic progenitors and down-regulated during myeloid differentiation of HL60 cells. Genomics. 2000 Dec 15;70(3):387–391. doi: 10.1006/geno.2000.6385. [DOI] [PubMed] [Google Scholar]
  49. Sakai H., Krizek B. A., Jacobsen S. E., Meyerowitz E. M. Regulation of SUP expression identifies multiple regulators involved in arabidopsis floral meristem development. Plant Cell. 2000 Sep;12(9):1607–1618. doi: 10.1105/tpc.12.9.1607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Satterwhite E., Sonoki T., Willis T. G., Harder L., Nowak R., Arriola E. L., Liu H., Price H. P., Gesk S., Steinemann D. The BCL11 gene family: involvement of BCL11A in lymphoid malignancies. Blood. 2001 Dec 1;98(12):3413–3420. doi: 10.1182/blood.v98.12.3413. [DOI] [PubMed] [Google Scholar]
  51. Sun L., Liu A., Georgopoulos K. Zinc finger-mediated protein interactions modulate Ikaros activity, a molecular control of lymphocyte development. EMBO J. 1996 Oct 1;15(19):5358–5369. [PMC free article] [PubMed] [Google Scholar]
  52. Suzuki M., Gerstein M., Yagi N. Stereochemical basis of DNA recognition by Zn fingers. Nucleic Acids Res. 1994 Aug 25;22(16):3397–3405. doi: 10.1093/nar/22.16.3397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Toyoda A., Fukumaki Y., Hattori M., Sakaki Y. Mode of activation of the GC box/Sp1-dependent promoter of the human NADH-cytochrome b5 reductase-encoding gene. Gene. 1995 Oct 27;164(2):351–355. doi: 10.1016/0378-1119(95)00443-a. [DOI] [PubMed] [Google Scholar]
  54. Tsai R. Y., Reed R. R. Cloning and functional characterization of Roaz, a zinc finger protein that interacts with O/E-1 to regulate gene expression: implications for olfactory neuronal development. J Neurosci. 1997 Jun 1;17(11):4159–4169. doi: 10.1523/JNEUROSCI.17-11-04159.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Tupler R., Perini G., Green M. R. Expressing the human genome. Nature. 2001 Feb 15;409(6822):832–833. doi: 10.1038/35057011. [DOI] [PubMed] [Google Scholar]
  56. Voz M. L., Agten N. S., Van de Ven W. J., Kas K. PLAG1, the main translocation target in pleomorphic adenoma of the salivary glands, is a positive regulator of IGF-II. Cancer Res. 2000 Jan 1;60(1):106–113. [PubMed] [Google Scholar]
  57. Wolfe S. A., Nekludova L., Pabo C. O. DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct. 2000;29:183–212. doi: 10.1146/annurev.biophys.29.1.183. [DOI] [PubMed] [Google Scholar]
  58. Ye J., Young H. A., Zhang X., Castranova V., Vallyathan V., Shi X. Regulation of a cell type-specific silencer in the human interleukin-3 gene promoter by the transcription factor YY1 and an AP2 sequence-recognizing factor. J Biol Chem. 1999 Sep 17;274(38):26661–26667. doi: 10.1074/jbc.274.38.26661. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES