Abstract
We investigated a cell-population modelling technique in which the population is constructed from an ensemble of individual cell models. The average value or the number distribution of any intracellular property captured by the individual cell model can be calculated by simulation of a sufficient number of individual cells. The proposed method is applied to a simple model of yeast glycolytic oscillations where synchronization of the cell population is mediated by the action of an excreted metabolite. We show that smooth one-dimensional distributions can be obtained with ensembles comprising 1000 individual cells. Random variations in the state and/or structure of individual cells are shown to produce complex dynamic behaviours which cannot be adequately captured by small ensembles.
Full Text
The Full Text of this article is available as a PDF (291.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BETZ A., CHANCE B. PHASE RELATIONSHIP OF GLYCOLYTIC INTERMEDIATES IN YEAST CELLS WITH OSCILLATORY METABOLIC CONTROL. Arch Biochem Biophys. 1965 Mar;109:585–594. doi: 10.1016/0003-9861(65)90404-2. [DOI] [PubMed] [Google Scholar]
- Bier M., Bakker B. M., Westerhoff H. V. How yeast cells synchronize their glycolytic oscillations: a perturbation analytic treatment. Biophys J. 2000 Mar;78(3):1087–1093. doi: 10.1016/S0006-3495(00)76667-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Das J., Busse H. G. Analysis of the dynamics of relaxation type oscillation in glycolysis of yeast extracts. Biophys J. 1991 Aug;60(2):369–379. doi: 10.1016/S0006-3495(91)82062-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Das J., Busse H. G. Long term oscillation in glycolysis. J Biochem. 1985 Mar;97(3):719–727. doi: 10.1093/oxfordjournals.jbchem.a135111. [DOI] [PubMed] [Google Scholar]
- Ghosh A. K., Chance B., Pye E. K. Metabolic coupling and synchronization of NADH oscillations in yeast cell populations. Arch Biochem Biophys. 1971 Jul;145(1):319–331. doi: 10.1016/0003-9861(71)90042-7. [DOI] [PubMed] [Google Scholar]
- Ghosh A., Chance B. Oscillations of glycolytic intermediates in yeast cells. Biochem Biophys Res Commun. 1964 Jun 1;16(2):174–181. doi: 10.1016/0006-291x(64)90357-2. [DOI] [PubMed] [Google Scholar]
- Goldbeter A., Lefever R. Dissipative structures for an allosteric model. Application to glycolytic oscillations. Biophys J. 1972 Oct;12(10):1302–1315. doi: 10.1016/S0006-3495(72)86164-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hatzis C., Srienc F., Fredrickson A. G. Multistaged corpuscular models of microbial growth: Monte Carlo simulations. Biosystems. 1995;36(1):19–35. doi: 10.1016/0303-2647(95)01524-o. [DOI] [PubMed] [Google Scholar]
- Hjortso M. A., Nielsen J. Population balance models of autonomous microbial oscillations. J Biotechnol. 1995 Oct 16;42(3):255–269. doi: 10.1016/0168-1656(95)00086-6. [DOI] [PubMed] [Google Scholar]
- Hynne F., Danø S., Sørensen P. G. Full-scale model of glycolysis in Saccharomyces cerevisiae. Biophys Chem. 2001 Dec 11;94(1-2):121–163. doi: 10.1016/s0301-4622(01)00229-0. [DOI] [PubMed] [Google Scholar]
- Rapp P. E. Why are so many biological systems periodic? Prog Neurobiol. 1987;29(3):261–273. doi: 10.1016/0301-0082(87)90023-2. [DOI] [PubMed] [Google Scholar]
- Richard P., Bakker B. M., Teusink B., Van Dam K., Westerhoff H. V. Acetaldehyde mediates the synchronization of sustained glycolytic oscillations in populations of yeast cells. Eur J Biochem. 1996 Jan 15;235(1-2):238–241. doi: 10.1111/j.1432-1033.1996.00238.x. [DOI] [PubMed] [Google Scholar]
- Richard P., Diderich J. A., Bakker B. M., Teusink B., van Dam K., Westerhoff H. V. Yeast cells with a specific cellular make-up and an environment that removes acetaldehyde are prone to sustained glycolytic oscillations. FEBS Lett. 1994 Mar 21;341(2-3):223–226. doi: 10.1016/0014-5793(94)80461-3. [DOI] [PubMed] [Google Scholar]
- Richard P., Teusink B., Westerhoff H. V., van Dam K. Around the growth phase transition S. cerevisiae's make-up favours sustained oscillations of intracellular metabolites. FEBS Lett. 1993 Feb 22;318(1):80–82. doi: 10.1016/0014-5793(93)81332-t. [DOI] [PubMed] [Google Scholar]
- Schilling C. H., Edwards J. S., Letscher D., Palsson B. Ø. Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems. Biotechnol Bioeng. 2000;71(4):286–306. [PubMed] [Google Scholar]
- Sel'kov E. E. Stabilization of energy charge, generation of oscillations and multiple steady states in energy metabolism as a result of purely stoichiometric regulation. Eur J Biochem. 1975 Nov 1;59(1):151–157. doi: 10.1111/j.1432-1033.1975.tb02436.x. [DOI] [PubMed] [Google Scholar]
- Teusink B., Bakker B. M., Westerhoff H. V. Control of frequency and amplitudes is shared by all enzymes in three models for yeast glycolytic oscillations. Biochim Biophys Acta. 1996 Jul 31;1275(3):204–212. doi: 10.1016/0005-2728(96)00026-6. [DOI] [PubMed] [Google Scholar]
- Tornheim K. Fructose 2,6-bisphosphate and glycolytic oscillations in skeletal muscle extracts. J Biol Chem. 1988 Feb 25;263(6):2619–2624. [PubMed] [Google Scholar]
- Wolf J., Heinrich R. Dynamics of two-component biochemical systems in interacting cells; synchronization and desynchronization of oscillations and multiple steady states. Biosystems. 1997;43(1):1–24. doi: 10.1016/s0303-2647(97)01688-2. [DOI] [PubMed] [Google Scholar]
- Wolf J., Heinrich R. Effect of cellular interaction on glycolytic oscillations in yeast: a theoretical investigation. Biochem J. 2000 Jan 15;345(Pt 2):321–334. [PMC free article] [PubMed] [Google Scholar]
- Wolf J., Passarge J., Somsen O. J., Snoep J. L., Heinrich R., Westerhoff H. V. Transduction of intracellular and intercellular dynamics in yeast glycolytic oscillations. Biophys J. 2000 Mar;78(3):1145–1153. doi: 10.1016/S0006-3495(00)76672-0. [DOI] [PMC free article] [PubMed] [Google Scholar]