Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Dec 1;368(Pt 2):565–572. doi: 10.1042/BJ20020838

Regulation of the 14-3-3-binding protein p39 by growth factors and nutrients in rat PC12 pheochromocytoma cells.

Jean E Harthill 1, Mercedes Pozuelo Rubio 1, Fiona C Milne 1, Carol MacKintosh 1
PMCID: PMC1223016  PMID: 12217078

Abstract

Unstimulated PC12 pheochromocytoma cells contain many proteins that bound to 14-3-3s in competition with a 14-3-3-binding peptide. Additional proteins, including one of 39 kDa (p39), became capable of binding to 14-3-3s in phosphatidylinositol 3-kinase-dependent responses to epidermal growth factor or nerve growth factor in vivo. The growth factor regulation was unaffected by inhibitors of the mitogen- or stress-activated protein kinase pathways, or by glucose starvation, but was blocked by amino acid starvation and only partially blocked by rapamycin. p39 in extracts of unstimulated, nutrient-fed cells, but not nutrient-starved cells, was able to bind to 14-3-3s after phosphorylation by protein kinase B (PKB) in vitro. Nutrient starvation did not affect the growth factor-stimulated activation of PKB in vivo. Either cycloheximide (CHX) or the cysteine protease inhibitor, MG132, restored the responsiveness of p39 to growth factors in nutrient-starved cells. In contrast, MG132 could not replace amino acids in supporting the growth factor-stimulated phosphorylation of two downstream targets of mTOR (mammalian target of rapamycin), namely eukaryotic initiation factor 4E binding protein 1 (4E-BP1) and p70 S6 kinase. CHX permitted complete growth factor-stimulated phosphorylation of both 4E-BP1 and p70 S6 kinase in nutrient- starved cells; however, unlike p39, phosphorylation of these proteins was blocked by rapamycin. These findings implicate PKB (or an enzyme with similar specificity) in the growth factor-triggered phosphorylation of p39. In addition, amino acid starvation induces a CHX- and MG132-sensitive pathway that targets p39 and appears to be distinct from the mechanism of regulation of 4E-BP1 and p70 S6 kinase.

Full Text

The Full Text of this article is available as a PDF (290.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alessi D. R., Caudwell F. B., Andjelkovic M., Hemmings B. A., Cohen P. Molecular basis for the substrate specificity of protein kinase B; comparison with MAPKAP kinase-1 and p70 S6 kinase. FEBS Lett. 1996 Dec 16;399(3):333–338. doi: 10.1016/s0014-5793(96)01370-1. [DOI] [PubMed] [Google Scholar]
  2. Andjelković M., Suidan H. S., Meier R., Frech M., Alessi D. R., Hemmings B. A. Nerve growth factor promotes activation of the alpha, beta and gamma isoforms of protein kinase B in PC12 pheochromocytoma cells. Eur J Biochem. 1998 Jan 15;251(1-2):195–200. doi: 10.1046/j.1432-1327.1998.2510195.x. [DOI] [PubMed] [Google Scholar]
  3. Beck T., Hall M. N. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature. 1999 Dec 9;402(6762):689–692. doi: 10.1038/45287. [DOI] [PubMed] [Google Scholar]
  4. Bertram P. G., Zeng C., Thorson J., Shaw A. S., Zheng X. F. The 14-3-3 proteins positively regulate rapamycin-sensitive signaling. Curr Biol. 1998 Nov 19;8(23):1259–1267. doi: 10.1016/s0960-9822(07)00535-0. [DOI] [PubMed] [Google Scholar]
  5. Brunet A., Bonni A., Zigmond M. J., Lin M. Z., Juo P., Hu L. S., Anderson M. J., Arden K. C., Blenis J., Greenberg M. E. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999 Mar 19;96(6):857–868. doi: 10.1016/s0092-8674(00)80595-4. [DOI] [PubMed] [Google Scholar]
  6. Cotelle V., Meek S. E., Provan F., Milne F. C., Morrice N., MacKintosh C. 14-3-3s regulate global cleavage of their diverse binding partners in sugar-starved Arabidopsis cells. EMBO J. 2000 Jun 15;19(12):2869–2876. doi: 10.1093/emboj/19.12.2869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cuenda A., Alessi D. R. Use of kinase inhibitors to dissect signaling pathways. Methods Mol Biol. 2000;99:161–175. doi: 10.1385/1-59259-054-3:161. [DOI] [PubMed] [Google Scholar]
  8. Davies S. P., Reddy H., Caivano M., Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J. 2000 Oct 1;351(Pt 1):95–105. doi: 10.1042/0264-6021:3510095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Deak M., Clifton A. D., Lucocq L. M., Alessi D. R. Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J. 1998 Aug 3;17(15):4426–4441. doi: 10.1093/emboj/17.15.4426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frödin M., Gammeltoft S. Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Mol Cell Endocrinol. 1999 May 25;151(1-2):65–77. doi: 10.1016/s0303-7207(99)00061-1. [DOI] [PubMed] [Google Scholar]
  11. Gingras A. C., Gygi S. P., Raught B., Polakiewicz R. D., Abraham R. T., Hoekstra M. F., Aebersold R., Sonenberg N. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev. 1999 Jun 1;13(11):1422–1437. doi: 10.1101/gad.13.11.1422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Guppy M., Hill D. J., Arthur P., Rowley A. F. Differences in fuel utilization between trout and human thrombocytes in physiological media. J Comp Physiol B. 1999 Oct;169(7):515–520. doi: 10.1007/s003600050250. [DOI] [PubMed] [Google Scholar]
  13. Gómez N., Tonks N. K., Morrison C., Harmar T., Cohen P. Evidence for communication between nerve growth factor and protein tyrosine phosphorylation. FEBS Lett. 1990 Oct 1;271(1-2):119–122. doi: 10.1016/0014-5793(90)80386-w. [DOI] [PubMed] [Google Scholar]
  14. Hall J. C., Heel K., McCauley R. Glutamine. Br J Surg. 1996 Mar;83(3):305–312. doi: 10.1002/bjs.1800830306. [DOI] [PubMed] [Google Scholar]
  15. Karim M. M., Hughes J. M., Warwicker J., Scheper G. C., Proud C. G., McCarthy J. E. A quantitative molecular model for modulation of mammalian translation by the eIF4E-binding protein 1. J Biol Chem. 2001 Mar 2;276(23):20750–20757. doi: 10.1074/jbc.M011068200. [DOI] [PubMed] [Google Scholar]
  16. Kimball Scot R., Jefferson Leonard S. Control of protein synthesis by amino acid availability. Curr Opin Clin Nutr Metab Care. 2002 Jan;5(1):63–67. doi: 10.1097/00075197-200201000-00012. [DOI] [PubMed] [Google Scholar]
  17. Kleijn M., Korthout M. M., Voorma H. O., Thomas A. A. Phosphorylation of the eIF4E-binding protein PHAS-I after exposure of PC12 cells to EGF and NGF. FEBS Lett. 1996 Nov 4;396(2-3):165–171. doi: 10.1016/0014-5793(96)01097-6. [DOI] [PubMed] [Google Scholar]
  18. Kleijn M., Proud C. G. Glucose and amino acids modulate translation factor activation by growth factors in PC12 cells. Biochem J. 2000 Apr 15;347(Pt 2):399–406. doi: 10.1042/0264-6021:3470399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kozma S. C., Lane H. A., Ferrari S., Luther H., Siegmann M., Thomas G. A stimulated S6 kinase from rat liver: identity with the mitogen activated S6 kinase of 3T3 cells. EMBO J. 1989 Dec 20;8(13):4125–4132. doi: 10.1002/j.1460-2075.1989.tb08597.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lawlor M. A., Alessi D. R. PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci. 2001 Aug;114(Pt 16):2903–2910. doi: 10.1242/jcs.114.16.2903. [DOI] [PubMed] [Google Scholar]
  21. Liu D., Bienkowska J., Petosa C., Collier R. J., Fu H., Liddington R. Crystal structure of the zeta isoform of the 14-3-3 protein. Nature. 1995 Jul 13;376(6536):191–194. doi: 10.1038/376191a0. [DOI] [PubMed] [Google Scholar]
  22. Moorhead G., Douglas P., Cotelle V., Harthill J., Morrice N., Meek S., Deiting U., Stitt M., Scarabel M., Aitken A. Phosphorylation-dependent interactions between enzymes of plant metabolism and 14-3-3 proteins. Plant J. 1999 Apr;18(1):1–12. doi: 10.1046/j.1365-313x.1999.00417.x. [DOI] [PubMed] [Google Scholar]
  23. Mothe-Satney I., Brunn G. J., McMahon L. P., Capaldo C. T., Abraham R. T., Lawrence J. C., Jr Mammalian target of rapamycin-dependent phosphorylation of PHAS-I in four (S/T)P sites detected by phospho-specific antibodies. J Biol Chem. 2000 Oct 27;275(43):33836–33843. doi: 10.1074/jbc.M006005200. [DOI] [PubMed] [Google Scholar]
  24. Moule S. K., Edgell N. J., Welsh G. I., Diggle T. A., Foulstone E. J., Heesom K. J., Proud C. G., Denton R. M. Multiple signalling pathways involved in the stimulation of fatty acid and glycogen synthesis by insulin in rat epididymal fat cells. Biochem J. 1995 Oct 15;311(Pt 2):595–601. doi: 10.1042/bj3110595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Muslin A. J., Xing H. 14-3-3 proteins: regulation of subcellular localization by molecular interference. Cell Signal. 2000 Dec;12(11-12):703–709. doi: 10.1016/s0898-6568(00)00131-5. [DOI] [PubMed] [Google Scholar]
  26. Neshat M. S., Mellinghoff I. K., Tran C., Stiles B., Thomas G., Petersen R., Frost P., Gibbons J. J., Wu H., Sawyers C. L. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci U S A. 2001 Aug 14;98(18):10314–10319. doi: 10.1073/pnas.171076798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Obata T., Yaffe M. B., Leparc G. G., Piro E. T., Maegawa H., Kashiwagi A., Kikkawa R., Cantley L. C. Peptide and protein library screening defines optimal substrate motifs for AKT/PKB. J Biol Chem. 2000 Nov 17;275(46):36108–36115. doi: 10.1074/jbc.M005497200. [DOI] [PubMed] [Google Scholar]
  28. Patel J., Wang X., Proud C. G. Glucose exerts a permissive effect on the regulation of the initiation factor 4E binding protein 4E-BP1. Biochem J. 2001 Sep 1;358(Pt 2):497–503. doi: 10.1042/0264-6021:3580497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pearson R. B., Dennis P. B., Han J. W., Williamson N. A., Kozma S. C., Wettenhall R. E., Thomas G. The principal target of rapamycin-induced p70s6k inactivation is a novel phosphorylation site within a conserved hydrophobic domain. EMBO J. 1995 Nov 1;14(21):5279–5287. doi: 10.1002/j.1460-2075.1995.tb00212.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Podsypanina K., Lee R. T., Politis C., Hennessy I., Crane A., Puc J., Neshat M., Wang H., Yang L., Gibbons J. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/- mice. Proc Natl Acad Sci U S A. 2001 Aug 14;98(18):10320–10325. doi: 10.1073/pnas.171060098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Proud C. G. Regulation of mRNA translation. Essays Biochem. 2001;37:97–108. doi: 10.1042/bse0370097. [DOI] [PubMed] [Google Scholar]
  32. Rena G., Prescott A. R., Guo S., Cohen P., Unterman T. G. Roles of the forkhead in rhabdomyosarcoma (FKHR) phosphorylation sites in regulating 14-3-3 binding, transactivation and nuclear targetting. Biochem J. 2001 Mar 15;354(Pt 3):605–612. doi: 10.1042/0264-6021:3540605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rennie M. J., Tipton K. D. Protein and amino acid metabolism during and after exercise and the effects of nutrition. Annu Rev Nutr. 2000;20:457–483. doi: 10.1146/annurev.nutr.20.1.457. [DOI] [PubMed] [Google Scholar]
  34. Roberts M. R. Regulatory 14-3-3 protein-protein interactions in plant cells. Curr Opin Plant Biol. 2000 Oct;3(5):400–405. doi: 10.1016/s1369-5266(00)00103-5. [DOI] [PubMed] [Google Scholar]
  35. Tang H., Hornstein E., Stolovich M., Levy G., Livingstone M., Templeton D., Avruch J., Meyuhas O. Amino acid-induced translation of TOP mRNAs is fully dependent on phosphatidylinositol 3-kinase-mediated signaling, is partially inhibited by rapamycin, and is independent of S6K1 and rpS6 phosphorylation. Mol Cell Biol. 2001 Dec;21(24):8671–8683. doi: 10.1128/MCB.21.24.8671-8683.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Torgersen Knut Martin, Vang Torkel, Abrahamsen Hilde, Yaqub Sheraz, Taskén Kjetil. Molecular mechanisms for protein kinase A-mediated modulation of immune function. Cell Signal. 2002 Jan;14(1):1–9. doi: 10.1016/s0898-6568(01)00214-5. [DOI] [PubMed] [Google Scholar]
  37. Walker K. S., Deak M., Paterson A., Hudson K., Cohen P., Alessi D. R. Activation of protein kinase B beta and gamma isoforms by insulin in vivo and by 3-phosphoinositide-dependent protein kinase-1 in vitro: comparison with protein kinase B alpha. Biochem J. 1998 Apr 1;331(Pt 1):299–308. doi: 10.1042/bj3310299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. van Hemert M. J., Steensma H. Y., van Heusden G. P. 14-3-3 proteins: key regulators of cell division, signalling and apoptosis. Bioessays. 2001 Oct;23(10):936–946. doi: 10.1002/bies.1134. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES