Abstract
The serine/threonine protein kinase LKB1 functions as a tumour suppressor, and mutations in this enzyme lead to the inherited Peutz-Jeghers cancer syndrome. We previously found that LKB1 was phosphorylated at Thr-366 in vivo, a residue conserved in mammalian, Xenopus and Drosophila LKB1, located on a C-terminal non-catalytic moiety of the enzyme. Mutation of Thr-366 to Ala or Asp partially inhibited the ability of LKB1 to suppress growth of G361 melanoma cells, but did not affect LKB1 activity in vitro or LKB1 localization in vivo. As a first step in exploring the role of this phosphorylation further, we have generated a phosphospecific antibody specifically recognizing LKB1 phosphorylated at Thr-366 and demonstrate that exposure of cells to ionizing radiation (IR) induced a marked phosphorylation of LKB1 at Thr-366 in the nucleus. Thr-366 lies in an optimal phosphorylation motif for the phosphoinositide 3-kinase-like kinases DNA-dependent protein kinase (DNA-PK), ataxia telangiectasia mutated kinase (ATM) and ataxia telangiectasia-related kinase (ATR), which function as sensors for DNA damage in cells and mediate cellular responses to DNA damage. We demonstrate that both DNA-PK and ATM efficiently phosphorylate LKB1 at Thr-366 in vitro and provide evidence that ATM mediates this phosphorylation in vivo. This is based on the finding that LKB1 is not phosphorylated in a cell line lacking ATM in response to IR, and that agents which induce cellular responses via ATR in preference to ATM poorly induce phosphorylation of LKB1 at Thr-366. These observations provide the first link between ATM and LKB1 and suggest that ATM could regulate LKB1.
Full Text
The Full Text of this article is available as a PDF (426.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abraham R. T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 2001 Sep 1;15(17):2177–2196. doi: 10.1101/gad.914401. [DOI] [PubMed] [Google Scholar]
- Achari Y., Lees-Miller S. P. Detection of DNA-dependent protein kinase in extracts from human and rodent cells. Methods Mol Biol. 2000;99:85–97. doi: 10.1385/1-59259-054-3:85. [DOI] [PubMed] [Google Scholar]
- Ahn J. Y., Schwarz J. K., Piwnica-Worms H., Canman C. E. Threonine 68 phosphorylation by ataxia telangiectasia mutated is required for efficient activation of Chk2 in response to ionizing radiation. Cancer Res. 2000 Nov 1;60(21):5934–5936. [PubMed] [Google Scholar]
- Anderson C. W. DNA damage and the DNA-activated protein kinase. Trends Biochem Sci. 1993 Nov;18(11):433–437. doi: 10.1016/0968-0004(93)90144-c. [DOI] [PubMed] [Google Scholar]
- Banin S., Moyal L., Shieh S., Taya Y., Anderson C. W., Chessa L., Smorodinsky N. I., Prives C., Reiss Y., Shiloh Y. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science. 1998 Sep 11;281(5383):1674–1677. doi: 10.1126/science.281.5383.1674. [DOI] [PubMed] [Google Scholar]
- Bardeesy Nabeel, Sinha Manisha, Hezel Aram F., Signoretti Sabina, Hathaway Nathaniel A., Sharpless Norman E., Loda Massimo, Carrasco Daniel R., DePinho Ronald A. Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation. Nature. 2002 Sep 12;419(6903):162–167. doi: 10.1038/nature01045. [DOI] [PubMed] [Google Scholar]
- Chan D. W., Lees-Miller S. P. The DNA-dependent protein kinase is inactivated by autophosphorylation of the catalytic subunit. J Biol Chem. 1996 Apr 12;271(15):8936–8941. doi: 10.1074/jbc.271.15.8936. [DOI] [PubMed] [Google Scholar]
- Chan D. W., Mody C. H., Ting N. S., Lees-Miller S. P. Purification and characterization of the double-stranded DNA-activated protein kinase, DNA-PK, from human placenta. Biochem Cell Biol. 1996;74(1):67–73. doi: 10.1139/o96-007. [DOI] [PubMed] [Google Scholar]
- Ching Y. P., Davies S. P., Hardie D. G. Analysis of the specificity of the AMP-activated protein kinase by site-directed mutagenesis of bacterially expressed 3-hydroxy 3-methylglutaryl-CoA reductase, using a single primer variant of the unique-site-elimination method. Eur J Biochem. 1996 May 1;237(3):800–808. doi: 10.1111/j.1432-1033.1996.0800p.x. [DOI] [PubMed] [Google Scholar]
- Collins S. P., Reoma J. L., Gamm D. M., Uhler M. D. LKB1, a novel serine/threonine protein kinase and potential tumour suppressor, is phosphorylated by cAMP-dependent protein kinase (PKA) and prenylated in vivo. Biochem J. 2000 Feb 1;345(Pt 3):673–680. [PMC free article] [PubMed] [Google Scholar]
- Dong S. M., Kim K. M., Kim S. Y., Shin M. S., Na E. Y., Lee S. H., Park W. S., Yoo N. J., Jang J. J., Yoon C. Y. Frequent somatic mutations in serine/threonine kinase 11/Peutz-Jeghers syndrome gene in left-sided colon cancer. Cancer Res. 1998 Sep 1;58(17):3787–3790. [PubMed] [Google Scholar]
- Durocher D., Jackson S. P. DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme? Curr Opin Cell Biol. 2001 Apr;13(2):225–231. doi: 10.1016/s0955-0674(00)00201-5. [DOI] [PubMed] [Google Scholar]
- Feijoo C., Hall-Jackson C., Wu R., Jenkins D., Leitch J., Gilbert D. M., Smythe C. Activation of mammalian Chk1 during DNA replication arrest: a role for Chk1 in the intra-S phase checkpoint monitoring replication origin firing. J Cell Biol. 2001 Sep 3;154(5):913–923. doi: 10.1083/jcb.200104099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gasch A. P., Huang M., Metzner S., Botstein D., Elledge S. J., Brown P. O. Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p. Mol Biol Cell. 2001 Oct;12(10):2987–3003. doi: 10.1091/mbc.12.10.2987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gruber S. B., Entius M. M., Petersen G. M., Laken S. J., Longo P. A., Boyer R., Levin A. M., Mujumdar U. J., Trent J. M., Kinzler K. W. Pathogenesis of adenocarcinoma in Peutz-Jeghers syndrome. Cancer Res. 1998 Dec 1;58(23):5267–5270. [PubMed] [Google Scholar]
- Guo S., Rena G., Cichy S., He X., Cohen P., Unterman T. Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J Biol Chem. 1999 Jun 11;274(24):17184–17192. doi: 10.1074/jbc.274.24.17184. [DOI] [PubMed] [Google Scholar]
- Hemminki A., Markie D., Tomlinson I., Avizienyte E., Roth S., Loukola A., Bignell G., Warren W., Aminoff M., Höglund P. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature. 1998 Jan 8;391(6663):184–187. doi: 10.1038/34432. [DOI] [PubMed] [Google Scholar]
- Hemminki A. The molecular basis and clinical aspects of Peutz-Jeghers syndrome. Cell Mol Life Sci. 1999 May;55(5):735–750. doi: 10.1007/s000180050329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jenne D. E., Reimann H., Nezu J., Friedel W., Loff S., Jeschke R., Müller O., Back W., Zimmer M. Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet. 1998 Jan;18(1):38–43. doi: 10.1038/ng0198-38. [DOI] [PubMed] [Google Scholar]
- Jishage Kou-ichi, Nezu Jun-ichi, Kawase Yosuke, Iwata Takamitsu, Watanabe Miho, Miyoshi Akio, Ose Asuka, Habu Kiyoshi, Kake Takei, Kamada Nobuo. Role of Lkb1, the causative gene of Peutz-Jegher's syndrome, in embryogenesis and polyposis. Proc Natl Acad Sci U S A. 2002 Jun 11;99(13):8903–8908. doi: 10.1073/pnas.122254599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karpova Alla Y., Trost Maren, Murray John M., Cantley Lewis C., Howley Peter M. Interferon regulatory factor-3 is an in vivo target of DNA-PK. Proc Natl Acad Sci U S A. 2002 Feb 26;99(5):2818–2823. doi: 10.1073/pnas.052713899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karuman P., Gozani O., Odze R. D., Zhou X. C., Zhu H., Shaw R., Brien T. P., Bozzuto C. D., Ooi D., Cantley L. C. The Peutz-Jegher gene product LKB1 is a mediator of p53-dependent cell death. Mol Cell. 2001 Jun;7(6):1307–1319. doi: 10.1016/s1097-2765(01)00258-1. [DOI] [PubMed] [Google Scholar]
- Kim S. T., Lim D. S., Canman C. E., Kastan M. B. Substrate specificities and identification of putative substrates of ATM kinase family members. J Biol Chem. 1999 Dec 31;274(53):37538–37543. doi: 10.1074/jbc.274.53.37538. [DOI] [PubMed] [Google Scholar]
- Lavin M. F., Shiloh Y. The genetic defect in ataxia-telangiectasia. Annu Rev Immunol. 1997;15:177–202. doi: 10.1146/annurev.immunol.15.1.177. [DOI] [PubMed] [Google Scholar]
- Lees-Miller S. P., Sakaguchi K., Ullrich S. J., Appella E., Anderson C. W. Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino-terminal transactivation domain of human p53. Mol Cell Biol. 1992 Nov;12(11):5041–5049. doi: 10.1128/mcb.12.11.5041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu Q., Guntuku S., Cui X. S., Matsuoka S., Cortez D., Tamai K., Luo G., Carattini-Rivera S., DeMayo F., Bradley A. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev. 2000 Jun 15;14(12):1448–1459. [PMC free article] [PubMed] [Google Scholar]
- Marignani P. A., Kanai F., Carpenter C. L. LKB1 associates with Brg1 and is necessary for Brg1-induced growth arrest. J Biol Chem. 2001 Jul 9;276(35):32415–32418. doi: 10.1074/jbc.C100207200. [DOI] [PubMed] [Google Scholar]
- Mihaylova V. T., Borland C. Z., Manjarrez L., Stern M. J., Sun H. The PTEN tumor suppressor homolog in Caenorhabditis elegans regulates longevity and dauer formation in an insulin receptor-like signaling pathway. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7427–7432. doi: 10.1073/pnas.96.13.7427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakau Masayuki, Miyoshi Hiroyuki, Seldin Michael F., Imamura Masayuki, Oshima Masanobu, Taketo Makoto M. Hepatocellular carcinoma caused by loss of heterozygosity in Lkb1 gene knockout mice. Cancer Res. 2002 Aug 15;62(16):4549–4553. [PubMed] [Google Scholar]
- O'Neill T., Dwyer A. J., Ziv Y., Chan D. W., Lees-Miller S. P., Abraham R. H., Lai J. H., Hill D., Shiloh Y., Cantley L. C. Utilization of oriented peptide libraries to identify substrate motifs selected by ATM. J Biol Chem. 2000 Jul 28;275(30):22719–22727. doi: 10.1074/jbc.M001002200. [DOI] [PubMed] [Google Scholar]
- Olschwang S., Boisson C., Thomas G. Peutz-Jeghers families unlinked to STK11/LKB1 gene mutations are highly predisposed to primitive biliary adenocarcinoma. J Med Genet. 2001 Jun;38(6):356–360. doi: 10.1136/jmg.38.6.356. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Park W. S., Moon Y. W., Yang Y. M., Kim Y. S., Kim Y. D., Fuller B. G., Vortmeyer A. O., Fogt F., Lubensky I. A., Zhuang Z. Mutations of the STK11 gene in sporadic gastric carcinoma. Int J Oncol. 1998 Sep;13(3):601–604. [PubMed] [Google Scholar]
- Resta N., Simone C., Mareni C., Montera M., Gentile M., Susca F., Gristina R., Pozzi S., Bertario L., Bufo P. STK11 mutations in Peutz-Jeghers syndrome and sporadic colon cancer. Cancer Res. 1998 Nov 1;58(21):4799–4801. [PubMed] [Google Scholar]
- Rossi Derrick J., Ylikorkala Antti, Korsisaari Nina, Salovaara Reijo, Luukko Keijo, Launonen Virpi, Henkemeyer Mark, Ristimaki Ari, Aaltonen Lauri A., Makela Tomi P. Induction of cyclooxygenase-2 in a mouse model of Peutz-Jeghers polyposis. Proc Natl Acad Sci U S A. 2002 Sep 6;99(19):12327–12332. doi: 10.1073/pnas.192301399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanchez Y., Wong C., Thoma R. S., Richman R., Wu Z., Piwnica-Worms H., Elledge S. J. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science. 1997 Sep 5;277(5331):1497–1501. doi: 10.1126/science.277.5331.1497. [DOI] [PubMed] [Google Scholar]
- Sapkota G. P., Kieloch A., Lizcano J. M., Lain S., Arthur J. S., Williams M. R., Morrice N., Deak M., Alessi D. R. Phosphorylation of the protein kinase mutated in Peutz-Jeghers cancer syndrome, LKB1/STK11, at Ser431 by p90(RSK) and cAMP-dependent protein kinase, but not its farnesylation at Cys(433), is essential for LKB1 to suppress cell vrowth. J Biol Chem. 2001 Jan 31;276(22):19469–19482. doi: 10.1074/jbc.M009953200. [DOI] [PubMed] [Google Scholar]
- Sapkota Gopal P., Boudeau Jérôme, Deak Maria, Kieloch Agnieszka, Morrice Nick, Alessi Dario R. Identification and characterization of four novel phosphorylation sites (Ser31, Ser325, Thr336 and Thr366) on LKB1/STK11, the protein kinase mutated in Peutz-Jeghers cancer syndrome. Biochem J. 2002 Mar 1;362(Pt 2):481–490. doi: 10.1042/0264-6021:3620481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shiloh Y., Kastan M. B. ATM: genome stability, neuronal development, and cancer cross paths. Adv Cancer Res. 2001;83:209–254. doi: 10.1016/s0065-230x(01)83007-4. [DOI] [PubMed] [Google Scholar]
- Shiloh Y., Rotman G. Ataxia-telangiectasia and the ATM gene: linking neurodegeneration, immunodeficiency, and cancer to cell cycle checkpoints. J Clin Immunol. 1996 Sep;16(5):254–260. doi: 10.1007/BF01541389. [DOI] [PubMed] [Google Scholar]
- Smith D. P., Rayter S. I., Niederlander C., Spicer J., Jones C. M., Ashworth A. LIP1, a cytoplasmic protein functionally linked to the Peutz-Jeghers syndrome kinase LKB1. Hum Mol Genet. 2001 Dec 1;10(25):2869–2877. doi: 10.1093/hmg/10.25.2869. [DOI] [PubMed] [Google Scholar]
- Smith D. P., Spicer J., Smith A., Swift S., Ashworth A. The mouse Peutz-Jeghers syndrome gene Lkb1 encodes a nuclear protein kinase. Hum Mol Genet. 1999 Aug;8(8):1479–1485. doi: 10.1093/hmg/8.8.1479. [DOI] [PubMed] [Google Scholar]
- Smith G. C., Cary R. B., Lakin N. D., Hann B. C., Teo S. H., Chen D. J., Jackson S. P. Purification and DNA binding properties of the ataxia-telangiectasia gene product ATM. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11134–11139. doi: 10.1073/pnas.96.20.11134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Su G. H., Hruban R. H., Bansal R. K., Bova G. S., Tang D. J., Shekher M. C., Westerman A. M., Entius M. M., Goggins M., Yeo C. J. Germline and somatic mutations of the STK11/LKB1 Peutz-Jeghers gene in pancreatic and biliary cancers. Am J Pathol. 1999 Jun;154(6):1835–1840. doi: 10.1016/S0002-9440(10)65440-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tiainen M., Ylikorkala A., Mäkelä T. P. Growth suppression by Lkb1 is mediated by a G(1) cell cycle arrest. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9248–9251. doi: 10.1073/pnas.96.16.9248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tiainen Marianne, Vaahtomeri Kari, Ylikorkala Antti, Mäkelä Tomi P. Growth arrest by the LKB1 tumor suppressor: induction of p21(WAF1/CIP1). Hum Mol Genet. 2002 Jun 15;11(13):1497–1504. doi: 10.1093/hmg/11.13.1497. [DOI] [PubMed] [Google Scholar]
- Tibbetts R. S., Cortez D., Brumbaugh K. M., Scully R., Livingston D., Elledge S. J., Abraham R. T. Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes Dev. 2000 Dec 1;14(23):2989–3002. doi: 10.1101/gad.851000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vanhaesebroeck B., Alessi D. R. The PI3K-PDK1 connection: more than just a road to PKB. Biochem J. 2000 Mar 15;346(Pt 3):561–576. [PMC free article] [PubMed] [Google Scholar]
- Wang Z. J., Churchman M., Avizienyte E., McKeown C., Davies S., Evans D. G., Ferguson A., Ellis I., Xu W. H., Yan Z. Y. Germline mutations of the LKB1 (STK11) gene in Peutz-Jeghers patients. J Med Genet. 1999 May;36(5):365–368. [PMC free article] [PubMed] [Google Scholar]
- Westerman A. M., Entius M. M., de Baar E., Boor P. P., Koole R., van Velthuysen M. L., Offerhaus G. J., Lindhout D., de Rooij F. W., Wilson J. H. Peutz-Jeghers syndrome: 78-year follow-up of the original family. Lancet. 1999 Apr 10;353(9160):1211–1215. doi: 10.1016/s0140-6736(98)08018-0. [DOI] [PubMed] [Google Scholar]
- Williams M. R., Arthur J. S., Balendran A., van der Kaay J., Poli V., Cohen P., Alessi D. R. The role of 3-phosphoinositide-dependent protein kinase 1 in activating AGC kinases defined in embryonic stem cells. Curr Biol. 2000 Apr 20;10(8):439–448. doi: 10.1016/s0960-9822(00)00441-3. [DOI] [PubMed] [Google Scholar]
- Yarden Ronit I., Pardo-Reoyo Sherly, Sgagias Magda, Cowan Kenneth H., Brody Lawrence C. BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nat Genet. 2002 Feb 11;30(3):285–289. doi: 10.1038/ng837. [DOI] [PubMed] [Google Scholar]
- Ylikorkala A., Avizienyte E., Tomlinson I. P., Tiainen M., Roth S., Loukola A., Hemminki A., Johansson M., Sistonen P., Markie D. Mutations and impaired function of LKB1 in familial and non-familial Peutz-Jeghers syndrome and a sporadic testicular cancer. Hum Mol Genet. 1999 Jan;8(1):45–51. doi: 10.1093/hmg/8.1.45. [DOI] [PubMed] [Google Scholar]
- Yoo Lina I., Chung Daniel C., Yuan Junying. LKB1--a master tumour suppressor of the small intestine and beyond. Nat Rev Cancer. 2002 Jul;2(7):529–535. doi: 10.1038/nrc843. [DOI] [PubMed] [Google Scholar]
- Yoon K. A., Ku J. L., Choi H. S., Heo S. C., Jeong S. Y., Park Y. J., Kim N. K., Kim J. C., Jung P. M., Park J. G. Germline mutations of the STK11 gene in Korean Peutz-Jeghers syndrome patients. Br J Cancer. 2000 Apr;82(8):1403–1406. doi: 10.1054/bjoc.1999.1125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao H., Piwnica-Worms H. ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol. 2001 Jul;21(13):4129–4139. doi: 10.1128/MCB.21.13.4129-4139.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ziv Y., Bar-Shira A., Pecker I., Russell P., Jorgensen T. J., Tsarfati I., Shiloh Y. Recombinant ATM protein complements the cellular A-T phenotype. Oncogene. 1997 Jul 10;15(2):159–167. doi: 10.1038/sj.onc.1201319. [DOI] [PubMed] [Google Scholar]