Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Dec 15;368(Pt 3):721–728. doi: 10.1042/BJ20021001

Solution structure and topology of the N-terminal membrane anchor domain of a microsomal cytochrome P450: prostaglandin I2 synthase.

Ke-He Ruan 1, Shui-Ping So 1, Weida Zheng 1, Jiaxin Wu 1, Dawei Li 1, Jennifer Kung 1
PMCID: PMC1223024  PMID: 12193162

Abstract

The three-dimensional structure of a synthetic peptide corresponding to the N-terminal membrane anchor domain (residues 1-25) of prostaglandin I(2) synthase (also known as cytochrome P450 8A1), an eicosanoid-synthesizing microsomal cytochrome P450, has been determined by two-dimensional (1)H NMR spectroscopy in trifluoroethanol and dodecylphosphocholine which mimic the hydrophobic membrane environment. A combination of two-dimensional NMR experiments, including NOESY, TOCSY and double-quantum-filtered COSY, was used to obtain complete (1)H NMR assignments for the peptide. Using the NOE data obtained from the assignments and simulated annealing calculations, the N-terminal membrane domain reveals a bent-shaped structure comprised of an initial helix (residues 3-11), followed by a turn (residues 12-16) and a further atypical helix (residues 17-23). The hydrophobic side chains of the helix and turn segments (residues 1-20) are proposed to interact with the hydrocarbon interior of the phospholipid bilayer of the endoplasmic reticulum (ER) membrane. The hydrophilic side chains of residues 21-25 (Arg-Arg-Arg-Thr-Arg) point away from the hydrophobic residues 1-20 and are expected to be exposed to the aqueous environment on the cytoplasmic side of the ER membrane. The distance between residues 1 and 20 is approx. 20 A (1 A=0.1 nm), less than the thickness of a lipid bilayer. This indicates that the N-terminal membrane anchor domain of prostaglandin I(2) synthase does not penetrate the ER membrane.

Full Text

The Full Text of this article is available as a PDF (186.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Black S. D. Membrane topology of the mammalian P450 cytochromes. FASEB J. 1992 Jan 6;6(2):680–685. doi: 10.1096/fasebj.6.2.1537456. [DOI] [PubMed] [Google Scholar]
  2. Bretscher M. S., Munro S. Cholesterol and the Golgi apparatus. Science. 1993 Sep 3;261(5126):1280–1281. doi: 10.1126/science.8362242. [DOI] [PubMed] [Google Scholar]
  3. Brown C. A., Black S. D. Membrane topology of mammalian cytochromes P-450 from liver endoplasmic reticulum. Determination by trypsinolysis of phenobarbital-treated microsomes. J Biol Chem. 1989 Mar 15;264(8):4442–4449. [PubMed] [Google Scholar]
  4. Chen Y. H., Yang J. T., Chau K. H. Determination of the helix and beta form of proteins in aqueous solution by circular dichroism. Biochemistry. 1974 Jul 30;13(16):3350–3359. doi: 10.1021/bi00713a027. [DOI] [PubMed] [Google Scholar]
  5. Chupin V., Killian J. A., Breg J., de Jongh H. H., Boelens R., Kaptein R., de Kruijff B. PhoE signal peptide inserts into micelles as a dynamic helix-break-helix structure, which is modulated by the environment. A two-dimensional 1H NMR study. Biochemistry. 1995 Sep 12;34(36):11617–11624. doi: 10.1021/bi00036a038. [DOI] [PubMed] [Google Scholar]
  6. DeWitt D. L., Smith W. L. Purification of prostacyclin synthase from bovine aorta by immunoaffinity chromatography. Evidence that the enzyme is a hemoprotein. J Biol Chem. 1983 Mar 10;258(5):3285–3293. [PubMed] [Google Scholar]
  7. Deng Hui, Huang Aimin, So Shui-Ping, Lin Yue-Zhen, Ruan Ke-He. Substrate access channel topology in membrane-bound prostacyclin synthase. Biochem J. 2002 Mar 15;362(Pt 3):545–551. doi: 10.1042/0264-6021:3620545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Edwards R. J., Murray B. P., Singleton A. M., Boobis A. R. Orientation of cytochromes P450 in the endoplasmic reticulum. Biochemistry. 1991 Jan 8;30(1):71–76. doi: 10.1021/bi00215a011. [DOI] [PubMed] [Google Scholar]
  9. Hara S., Miyata A., Yokoyama C., Inoue H., Brugger R., Lottspeich F., Ullrich V., Tanabe T. Isolation and molecular cloning of prostacyclin synthase from bovine endothelial cells. J Biol Chem. 1994 Aug 5;269(31):19897–19903. [PubMed] [Google Scholar]
  10. Hasemann C. A., Ravichandran K. G., Peterson J. A., Deisenhofer J. Crystal structure and refinement of cytochrome P450terp at 2.3 A resolution. J Mol Biol. 1994 Mar 4;236(4):1169–1185. doi: 10.1016/0022-2836(94)90019-1. [DOI] [PubMed] [Google Scholar]
  11. Hecker M., Ullrich V. On the mechanism of prostacyclin and thromboxane A2 biosynthesis. J Biol Chem. 1989 Jan 5;264(1):141–150. [PubMed] [Google Scholar]
  12. Johnson E. F., Kronbach T., Hsu M. H. Analysis of the catalytic specificity of cytochrome P450 enzymes through site-directed mutagenesis. FASEB J. 1992 Jan 6;6(2):700–705. doi: 10.1096/fasebj.6.2.1537459. [DOI] [PubMed] [Google Scholar]
  13. König B., Arendt A., McDowell J. H., Kahlert M., Hargrave P. A., Hofmann K. P. Three cytoplasmic loops of rhodopsin interact with transducin. Proc Natl Acad Sci U S A. 1989 Sep;86(18):6878–6882. doi: 10.1073/pnas.86.18.6878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lin Y., Wu K. K., Ruan K. H. Characterization of the secondary structure and membrane interaction of the putative membrane anchor domains of prostaglandin I2 synthase and cytochrome P450 2C1. Arch Biochem Biophys. 1998 Apr 1;352(1):78–84. doi: 10.1006/abbi.1998.0599. [DOI] [PubMed] [Google Scholar]
  15. Nelson D. R., Strobel H. W. On the membrane topology of vertebrate cytochrome P-450 proteins. J Biol Chem. 1988 May 5;263(13):6038–6050. [PubMed] [Google Scholar]
  16. Pardi A., Billeter M., Wüthrich K. Calibration of the angular dependence of the amide proton-C alpha proton coupling constants, 3JHN alpha, in a globular protein. Use of 3JHN alpha for identification of helical secondary structure. J Mol Biol. 1984 Dec 15;180(3):741–751. doi: 10.1016/0022-2836(84)90035-4. [DOI] [PubMed] [Google Scholar]
  17. Picot D., Loll P. J., Garavito R. M. The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1. Nature. 1994 Jan 20;367(6460):243–249. doi: 10.1038/367243a0. [DOI] [PubMed] [Google Scholar]
  18. Poulos T. L., Finzel B. C., Howard A. J. High-resolution crystal structure of cytochrome P450cam. J Mol Biol. 1987 Jun 5;195(3):687–700. doi: 10.1016/0022-2836(87)90190-2. [DOI] [PubMed] [Google Scholar]
  19. Rance M., Sørensen O. W., Bodenhausen G., Wagner G., Ernst R. R., Wüthrich K. Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. Biochem Biophys Res Commun. 1983 Dec 16;117(2):479–485. doi: 10.1016/0006-291x(83)91225-1. [DOI] [PubMed] [Google Scholar]
  20. Ravichandran K. G., Boddupalli S. S., Hasermann C. A., Peterson J. A., Deisenhofer J. Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450's. Science. 1993 Aug 6;261(5122):731–736. doi: 10.1126/science.8342039. [DOI] [PubMed] [Google Scholar]
  21. Ruan K. H., Li D., Ji J., Lin Y. Z., Gao X. Structural characterization and topology of the second potential membrane anchor region in the thromboxane A2 synthase amino-terminal domain. Biochemistry. 1998 Jan 20;37(3):822–830. doi: 10.1021/bi971881y. [DOI] [PubMed] [Google Scholar]
  22. Ruan K. H., Li P., Kulmacz R. J., Wu K. K. Characterization of the structure and membrane interaction of NH2-terminal domain of thromboxane A2 synthase. J Biol Chem. 1994 Aug 19;269(33):20938–20942. [PubMed] [Google Scholar]
  23. Ruan K. H., Milfeld K., Kulmacz R. J., Wu K. K. Comparison of the construction of a 3-D model for human thromboxane synthase using P450cam and BM-3 as templates: implications for the substrate binding pocket. Protein Eng. 1994 Nov;7(11):1345–1351. doi: 10.1093/protein/7.11.1345. [DOI] [PubMed] [Google Scholar]
  24. Ruan K. H., So S. P., Wu J., Li D., Huang A., Kung J. Solution structure of the second extracellular loop of human thromboxane A2 receptor. Biochemistry. 2001 Jan 9;40(1):275–280. doi: 10.1021/bi001867c. [DOI] [PubMed] [Google Scholar]
  25. Ruan K. H., Spurlino J., Quiocho F. A., Atassi M. Z. Acetylcholine receptor-alpha-bungarotoxin interactions: determination of the region-to-region contacts by peptide-peptide interactions and molecular modeling of the receptor cavity. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6156–6160. doi: 10.1073/pnas.87.16.6156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ruan K. H., Stiles B. G., Atassi M. Z. The short-neurotoxin-binding regions on the alpha-chain of human and Torpedo californica acetylcholine receptors. Biochem J. 1991 Mar 15;274(Pt 3):849–854. doi: 10.1042/bj2740849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ruan K. H., Wang L. H., Wu K. K., Kulmacz R. J. Amino-terminal topology of thromboxane synthase in the endoplasmic reticulum. J Biol Chem. 1993 Sep 15;268(26):19483–19490. [PubMed] [Google Scholar]
  28. Shyue S. K., Ruan K. H., Wang L. H., Wu K. K. Prostacyclin synthase active sites. Identification by molecular modeling-guided site-directed mutagenesis. J Biol Chem. 1997 Feb 7;272(6):3657–3662. doi: 10.1074/jbc.272.6.3657. [DOI] [PubMed] [Google Scholar]
  29. Szczesna-Skorupa E., Kemper B. NH2-terminal substitutions of basic amino acids induce translocation across the microsomal membrane and glycosylation of rabbit cytochrome P450IIC2. J Cell Biol. 1989 Apr;108(4):1237–1243. doi: 10.1083/jcb.108.4.1237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Takemoto D. J., Morrison D., Davis L. C., Takemoto L. J. C-terminal peptides of rhodopsin. Determination of the optimum sequence for recognition of retinal transducin. Biochem J. 1986 Apr 1;235(1):309–312. doi: 10.1042/bj2350309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tarr G. E., Black S. D., Fujita V. S., Coon M. J. Complete amino acid sequence and predicted membrane topology of phenobarbital-induced cytochrome P-450 (isozyme 2) from rabbit liver microsomes. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6552–6556. doi: 10.1073/pnas.80.21.6552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ullrich V., Castle L., Weber P. Spectral evidence for the cytochrome P450 nature of prostacyclin synthetase. Biochem Pharmacol. 1981 Jul 15;30(14):2033–2036. doi: 10.1016/0006-2952(81)90218-5. [DOI] [PubMed] [Google Scholar]
  33. Vergères G., Winterhalter K. H., Richter C. Localization of the N-terminal methionine of rat liver cytochrome P-450 in the lumen of the endoplasmic reticulum. Biochim Biophys Acta. 1991 Apr 2;1063(2):235–241. doi: 10.1016/0005-2736(91)90376-j. [DOI] [PubMed] [Google Scholar]
  34. Wang L. H., Matijevic-Aleksic N., Hsu P. Y., Ruan K. H., Wu K. K., Kulmacz R. J. Identification of thromboxane A2 synthase active site residues by molecular modeling-guided site-directed mutagenesis. J Biol Chem. 1996 Aug 16;271(33):19970–19975. doi: 10.1074/jbc.271.33.19970. [DOI] [PubMed] [Google Scholar]
  35. Williams P. A., Cosme J., Sridhar V., Johnson E. F., McRee D. E. Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol Cell. 2000 Jan;5(1):121–131. doi: 10.1016/s1097-2765(00)80408-6. [DOI] [PubMed] [Google Scholar]
  36. Wishart D. S., Sykes B. D., Richards F. M. The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry. 1992 Feb 18;31(6):1647–1651. doi: 10.1021/bi00121a010. [DOI] [PubMed] [Google Scholar]
  37. Wu K. K., Thiagarajan P. Role of endothelium in thrombosis and hemostasis. Annu Rev Med. 1996;47:315–331. doi: 10.1146/annurev.med.47.1.315. [DOI] [PubMed] [Google Scholar]
  38. Wüthrich K., Billeter M., Braun W. Pseudo-structures for the 20 common amino acids for use in studies of protein conformations by measurements of intramolecular proton-proton distance constraints with nuclear magnetic resonance. J Mol Biol. 1983 Oct 5;169(4):949–961. doi: 10.1016/s0022-2836(83)80144-2. [DOI] [PubMed] [Google Scholar]
  39. Yeagle P. L., Alderfer J. L., Albert A. D. Structure of the carboxy-terminal domain of bovine rhodopsin. Nat Struct Biol. 1995 Oct;2(10):832–834. doi: 10.1038/nsb1095-832. [DOI] [PubMed] [Google Scholar]
  40. Zvelebil M. J., Wolf C. R., Sternberg M. J. A predicted three-dimensional structure of human cytochrome P450: implications for substrate specificity. Protein Eng. 1991 Feb;4(3):271–282. doi: 10.1093/protein/4.3.271. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES