Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Dec 15;368(Pt 3):705–720. doi: 10.1042/BJ20020101

Oxidation-triggered c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase pathways for apoptosis in human leukaemic cells stimulated by epigallocatechin-3-gallate (EGCG): a distinct pathway from those of chemically induced and receptor-mediated apoptosis.

Koichi Saeki 1, Norihiko Kobayashi 1, Yuko Inazawa 1, Hong Zhang 1, Hideki Nishitoh 1, Hidenori Ichijo 1, Kumiko Saeki 1, Mamoru Isemura 1, Akira Yuo 1
PMCID: PMC1223028  PMID: 12206715

Abstract

We investigated intracellular signalling pathways for apoptosis induced by epigallocatechin-3-gallate (EGCG) as compared with those induced by a toxic chemical substance (etoposide, VP16) or the death receptor ligand [tumour necrosis factor (TNF)]. EGCG as well as VP16 and TNF induced activation of two apoptosis-regulating mitogen-activated protein (MAP) kinases, namely c-Jun N-terminal kinase (JNK) and p38 MAP kinase, in both human leukaemic U937 and OCI-AML1a cells. In U937 cells, the apoptosis and activation of caspases-3 and -9 induced by EGCG but not VP16 and TNF were inhibited with SB203580, a specific inhibitor of p38, while those induced by EGCG and VP16 but not TNF were inhibited with SB202190, a rather broad inhibitor of JNK and p38. In contrast, the EGCG-induced apoptosis in OCI-AML1a cells was resistant to SB203580 but not to SB202190. Unlike TNF, EGCG did not induce the activation of nuclear factor-kappaB but rather induced the primary activation of caspase-9. N -Acetyl-L-cysteine (NAC) almost completely abolished apoptosis induced by EGCG under conditions in which the apoptosis induced by VP16 or TNF was not affected. The JNK/p38 activation by EGCG was also potently inhibited by NAC, whereas those by VP16 and TNF were either not or only minimally affected by NAC. In addition, dithiothreitol also suppressed both apoptosis and JNK/p38 activation by EGCG, and EGCG-induced activation of MAP kinase kinase (MKK) 3/6, MKK4 and apoptosis-regulating kinase 1 (ASK1) was suppressed by NAC. Dominant negative ASK1, MKK6, MKK4 and JNK1 potently inhibited EGCG-induced cell death. EGCG induced an intracellular increase in reactive oxygen species and GSSG, both of which were also inhibited by NAC, and the decreased synthesis of glutathione rendered the cell susceptible to EGCG-induced apoptosis. Taken together these results strongly suggest that EGCG executed apoptotic cell death via an ASK1, MKK and JNK/p38 cascade which is triggered by NAC-sensitive intracellular oxidative events in a manner distinct from chemically induced or receptor-mediated apoptosis.

Full Text

The Full Text of this article is available as a PDF (548.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adrain C., Martin S. J. The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. Trends Biochem Sci. 2001 Jun;26(6):390–397. doi: 10.1016/s0968-0004(01)01844-8. [DOI] [PubMed] [Google Scholar]
  2. Ahmad N., Feyes D. K., Nieminen A. L., Agarwal R., Mukhtar H. Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells. J Natl Cancer Inst. 1997 Dec 17;89(24):1881–1886. doi: 10.1093/jnci/89.24.1881. [DOI] [PubMed] [Google Scholar]
  3. Assefa Z., Vantieghem A., Garmyn M., Declercq W., Vandenabeele P., Vandenheede J. R., Bouillon R., Merlevede W., Agostinis P. p38 mitogen-activated protein kinase regulates a novel, caspase-independent pathway for the mitochondrial cytochrome c release in ultraviolet B radiation-induced apoptosis. J Biol Chem. 2000 Jul 14;275(28):21416–21421. doi: 10.1074/jbc.M002634200. [DOI] [PubMed] [Google Scholar]
  4. Baud V., Karin M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol. 2001 Sep;11(9):372–377. doi: 10.1016/s0962-8924(01)02064-5. [DOI] [PubMed] [Google Scholar]
  5. Bennett B. L., Sasaki D. T., Murray B. W., O'Leary E. C., Sakata S. T., Xu W., Leisten J. C., Motiwala A., Pierce S., Satoh Y. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13681–13686. doi: 10.1073/pnas.251194298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cambien B., Pomeranz M., Millet M. A., Rossi B., Schmid-Alliana A. Signal transduction involved in MCP-1-mediated monocytic transendothelial migration. Blood. 2001 Jan 15;97(2):359–366. doi: 10.1182/blood.v97.2.359. [DOI] [PubMed] [Google Scholar]
  7. Chandel N. S., Schumacker P. T., Arch R. H. Reactive oxygen species are downstream products of TRAF-mediated signal transduction. J Biol Chem. 2001 Sep 14;276(46):42728–42736. doi: 10.1074/jbc.M103074200. [DOI] [PubMed] [Google Scholar]
  8. Chung J. Y., Huang C., Meng X., Dong Z., Yang C. S. Inhibition of activator protein 1 activity and cell growth by purified green tea and black tea polyphenols in H-ras-transformed cells: structure-activity relationship and mechanisms involved. Cancer Res. 1999 Sep 15;59(18):4610–4617. [PubMed] [Google Scholar]
  9. Dai J., Weinberg R. S., Waxman S., Jing Y. Malignant cells can be sensitized to undergo growth inhibition and apoptosis by arsenic trioxide through modulation of the glutathione redox system. Blood. 1999 Jan 1;93(1):268–277. [PubMed] [Google Scholar]
  10. Davis W., Jr, Ronai Z., Tew K. D. Cellular thiols and reactive oxygen species in drug-induced apoptosis. J Pharmacol Exp Ther. 2001 Jan;296(1):1–6. [PubMed] [Google Scholar]
  11. Enari M., Sakahira H., Yokoyama H., Okawa K., Iwamatsu A., Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature. 1998 Jan 1;391(6662):43–50. doi: 10.1038/34112. [DOI] [PubMed] [Google Scholar]
  12. Fujiki H., Yoshizawa S., Horiuchi T., Suganuma M., Yatsunami J., Nishiwaki S., Okabe S., Nishiwaki-Matsushima R., Okuda T., Sugimura T. Anticarcinogenic effects of (-)-epigallocatechin gallate. Prev Med. 1992 Jul;21(4):503–509. doi: 10.1016/0091-7435(92)90057-o. [DOI] [PubMed] [Google Scholar]
  13. Ghatan S., Larner S., Kinoshita Y., Hetman M., Patel L., Xia Z., Youle R. J., Morrison R. S. p38 MAP kinase mediates bax translocation in nitric oxide-induced apoptosis in neurons. J Cell Biol. 2000 Jul 24;150(2):335–347. doi: 10.1083/jcb.150.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ginn-Pease M. E., Whisler R. L. Redox signals and NF-kappaB activation in T cells. Free Radic Biol Med. 1998 Aug;25(3):346–361. doi: 10.1016/s0891-5849(98)00067-7. [DOI] [PubMed] [Google Scholar]
  15. Griffith O. W., Meister A. Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol Chem. 1979 Aug 25;254(16):7558–7560. [PubMed] [Google Scholar]
  16. Hamm Astrid, Krott Nicole, Breibach Ines, Blindt Rüdiger, Bosserhoff Anja K. Efficient transfection method for primary cells. Tissue Eng. 2002 Apr;8(2):235–245. doi: 10.1089/107632702753725003. [DOI] [PubMed] [Google Scholar]
  17. Hatai T., Matsuzawa A., Inoshita S., Mochida Y., Kuroda T., Sakamaki K., Kuida K., Yonehara S., Ichijo H., Takeda K. Execution of apoptosis signal-regulating kinase 1 (ASK1)-induced apoptosis by the mitochondria-dependent caspase activation. J Biol Chem. 2000 Aug 25;275(34):26576–26581. doi: 10.1074/jbc.M003412200. [DOI] [PubMed] [Google Scholar]
  18. Henkel T., Machleidt T., Alkalay I., Krönke M., Ben-Neriah Y., Baeuerle P. A. Rapid proteolysis of I kappa B-alpha is necessary for activation of transcription factor NF-kappa B. Nature. 1993 Sep 9;365(6442):182–185. doi: 10.1038/365182a0. [DOI] [PubMed] [Google Scholar]
  19. Ichijo H. From receptors to stress-activated MAP kinases. Oncogene. 1999 Nov 1;18(45):6087–6093. doi: 10.1038/sj.onc.1203129. [DOI] [PubMed] [Google Scholar]
  20. Ichijo H., Nishida E., Irie K., ten Dijke P., Saitoh M., Moriguchi T., Takagi M., Matsumoto K., Miyazono K., Gotoh Y. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science. 1997 Jan 3;275(5296):90–94. doi: 10.1126/science.275.5296.90. [DOI] [PubMed] [Google Scholar]
  21. Isemura M., Saeki K., Minami T., Hayakawa S., Kimura T., Shoji Y., Sazuka M. Inhibition of matrix metalloproteinases by tea catechins and related polyphenols. Ann N Y Acad Sci. 1999 Jun 30;878:629–631. doi: 10.1111/j.1749-6632.1999.tb07746.x. [DOI] [PubMed] [Google Scholar]
  22. Islam S., Islam N., Kermode T., Johnstone B., Mukhtar H., Moskowitz R. W., Goldberg V. M., Malemud C. J., Haqqi T. M. Involvement of caspase-3 in epigallocatechin-3-gallate-mediated apoptosis of human chondrosarcoma cells. Biochem Biophys Res Commun. 2000 Apr 21;270(3):793–797. doi: 10.1006/bbrc.2000.2536. [DOI] [PubMed] [Google Scholar]
  23. Jacinto E., Werlen G., Karin M. Cooperation between Syk and Rac1 leads to synergistic JNK activation in T lymphocytes. Immunity. 1998 Jan;8(1):31–41. doi: 10.1016/s1074-7613(00)80456-2. [DOI] [PubMed] [Google Scholar]
  24. Jankun J., Selman S. H., Swiercz R., Skrzypczak-Jankun E. Why drinking green tea could prevent cancer. Nature. 1997 Jun 5;387(6633):561–561. doi: 10.1038/42381. [DOI] [PubMed] [Google Scholar]
  25. Katiyar S. K., Afaq F., Azizuddin K., Mukhtar H. Inhibition of UVB-induced oxidative stress-mediated phosphorylation of mitogen-activated protein kinase signaling pathways in cultured human epidermal keratinocytes by green tea polyphenol (-)-epigallocatechin-3-gallate. Toxicol Appl Pharmacol. 2001 Oct 15;176(2):110–117. doi: 10.1006/taap.2001.9276. [DOI] [PubMed] [Google Scholar]
  26. Katiyar S. K., Afaq F., Perez A., Mukhtar H. Green tea polyphenol (-)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress. Carcinogenesis. 2001 Feb;22(2):287–294. doi: 10.1093/carcin/22.2.287. [DOI] [PubMed] [Google Scholar]
  27. Katiyar S. K., Elmets C. A. Green tea polyphenolic antioxidants and skin photoprotection (Review). Int J Oncol. 2001 Jun;18(6):1307–1313. doi: 10.3892/ijo.18.6.1307. [DOI] [PubMed] [Google Scholar]
  28. Lee J. C., Laydon J. T., McDonnell P. C., Gallagher T. F., Kumar S., Green D., McNulty D., Blumenthal M. J., Heys J. R., Landvatter S. W. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature. 1994 Dec 22;372(6508):739–746. doi: 10.1038/372739a0. [DOI] [PubMed] [Google Scholar]
  29. Matsuda S., Moriguchi T., Koyasu S., Nishida E. T lymphocyte activation signals for interleukin-2 production involve activation of MKK6-p38 and MKK7-SAPK/JNK signaling pathways sensitive to cyclosporin A. J Biol Chem. 1998 May 15;273(20):12378–12382. doi: 10.1074/jbc.273.20.12378. [DOI] [PubMed] [Google Scholar]
  30. Meister A., Anderson M. E. Glutathione. Annu Rev Biochem. 1983;52:711–760. doi: 10.1146/annurev.bi.52.070183.003431. [DOI] [PubMed] [Google Scholar]
  31. Mouria Michelle, Gukovskaya Anna S., Jung Yoon, Buechler Peter, Hines Oscar J., Reber Howard A., Pandol Stephen J. Food-derived polyphenols inhibit pancreatic cancer growth through mitochondrial cytochrome C release and apoptosis. Int J Cancer. 2002 Apr 10;98(5):761–769. doi: 10.1002/ijc.10202. [DOI] [PubMed] [Google Scholar]
  32. Nagata S. Apoptotic DNA fragmentation. Exp Cell Res. 2000 Apr 10;256(1):12–18. doi: 10.1006/excr.2000.4834. [DOI] [PubMed] [Google Scholar]
  33. Nagata Y., Todokoro K. Requirement of activation of JNK and p38 for environmental stress-induced erythroid differentiation and apoptosis and of inhibition of ERK for apoptosis. Blood. 1999 Aug 1;94(3):853–863. [PubMed] [Google Scholar]
  34. Nanjo F., Goto K., Seto R., Suzuki M., Sakai M., Hara Y. Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. Free Radic Biol Med. 1996;21(6):895–902. doi: 10.1016/0891-5849(96)00237-7. [DOI] [PubMed] [Google Scholar]
  35. Nanjo F., Mori M., Goto K., Hara Y. Radical scavenging activity of tea catechins and their related compounds. Biosci Biotechnol Biochem. 1999 Sep;63(9):1621–1623. doi: 10.1271/bbb.63.1621. [DOI] [PubMed] [Google Scholar]
  36. Nara N. Colony-stimulating factor (CSF)-dependent growth of two leukemia cell lines. Leuk Lymphoma. 1992 Jul;7(4):331–335. doi: 10.3109/10428199209049786. [DOI] [PubMed] [Google Scholar]
  37. Nguyen L. T., Duncan G. S., Mirtsos C., Ng M., Speiser D. E., Shahinian A., Marino M. W., Mak T. W., Ohashi P. S., Yeh W. C. TRAF2 deficiency results in hyperactivity of certain TNFR1 signals and impairment of CD40-mediated responses. Immunity. 1999 Sep;11(3):379–389. doi: 10.1016/s1074-7613(00)80113-2. [DOI] [PubMed] [Google Scholar]
  38. Noguchi K., Kitanaka C., Yamana H., Kokubu A., Mochizuki T., Kuchino Y. Regulation of c-Myc through phosphorylation at Ser-62 and Ser-71 by c-Jun N-terminal kinase. J Biol Chem. 1999 Nov 12;274(46):32580–32587. doi: 10.1074/jbc.274.46.32580. [DOI] [PubMed] [Google Scholar]
  39. Okuma E., Saeki K., Shimura M., Ishizaka Y., Yasugi E., Yuo A. Induction of apoptosis in human hematopoietic U937 cells by granulocyte-macrophage colony-stimulating factor: possible existence of caspase 3-like pathway. Leukemia. 2000 Apr;14(4):612–619. doi: 10.1038/sj.leu.2401716. [DOI] [PubMed] [Google Scholar]
  40. Piette J., Piret B., Bonizzi G., Schoonbroodt S., Merville M. P., Legrand-Poels S., Bours V. Multiple redox regulation in NF-kappaB transcription factor activation. Biol Chem. 1997 Nov;378(11):1237–1245. [PubMed] [Google Scholar]
  41. Saeki K., Hayakawa S., Isemura M., Miyase T. Importance of a pyrogallol-type structure in catechin compounds for apoptosis-inducing activity. Phytochemistry. 2000 Feb;53(3):391–394. doi: 10.1016/s0031-9422(99)00513-0. [DOI] [PubMed] [Google Scholar]
  42. Saitoh M., Nishitoh H., Fujii M., Takeda K., Tobiume K., Sawada Y., Kawabata M., Miyazono K., Ichijo H. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 1998 May 1;17(9):2596–2606. doi: 10.1093/emboj/17.9.2596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Schreck R., Rieber P., Baeuerle P. A. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J. 1991 Aug;10(8):2247–2258. doi: 10.1002/j.1460-2075.1991.tb07761.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Schreiber E., Matthias P., Müller M. M., Schaffner W. Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic Acids Res. 1989 Aug 11;17(15):6419–6419. doi: 10.1093/nar/17.15.6419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sellins K. S., Cohen J. J. Gene induction by gamma-irradiation leads to DNA fragmentation in lymphocytes. J Immunol. 1987 Nov 15;139(10):3199–3206. [PubMed] [Google Scholar]
  46. Slee E. A., Harte M. T., Kluck R. M., Wolf B. B., Casiano C. A., Newmeyer D. D., Wang H. G., Reed J. C., Nicholson D. W., Alnemri E. S. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol. 1999 Jan 25;144(2):281–292. doi: 10.1083/jcb.144.2.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Smith C. A., Farrah T., Goodwin R. G. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell. 1994 Mar 25;76(6):959–962. doi: 10.1016/0092-8674(94)90372-7. [DOI] [PubMed] [Google Scholar]
  48. Stennicke H. R., Salvesen G. S. Caspases - controlling intracellular signals by protease zymogen activation. Biochim Biophys Acta. 2000 Mar 7;1477(1-2):299–306. doi: 10.1016/s0167-4838(99)00281-2. [DOI] [PubMed] [Google Scholar]
  49. Sun X. M., MacFarlane M., Zhuang J., Wolf B. B., Green D. R., Cohen G. M. Distinct caspase cascades are initiated in receptor-mediated and chemical-induced apoptosis. J Biol Chem. 1999 Feb 19;274(8):5053–5060. doi: 10.1074/jbc.274.8.5053. [DOI] [PubMed] [Google Scholar]
  50. Tobiume K., Matsuzawa A., Takahashi T., Nishitoh H., Morita K., Takeda K., Minowa O., Miyazono K., Noda T., Ichijo H. ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep. 2001 Mar;2(3):222–228. doi: 10.1093/embo-reports/kve046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Tobiume Kei, Saitoh Masao, Ichijo Hidenori. Activation of apoptosis signal-regulating kinase 1 by the stress-induced activating phosphorylation of pre-formed oligomer. J Cell Physiol. 2002 Apr;191(1):95–104. doi: 10.1002/jcp.10080. [DOI] [PubMed] [Google Scholar]
  52. Torcia M., De Chiara G., Nencioni L., Ammendola S., Labardi D., Lucibello M., Rosini P., Marlier L. N., Bonini P., Dello Sbarba P. Nerve growth factor inhibits apoptosis in memory B lymphocytes via inactivation of p38 MAPK, prevention of Bcl-2 phosphorylation, and cytochrome c release. J Biol Chem. 2001 Aug 8;276(42):39027–39036. doi: 10.1074/jbc.M102970200. [DOI] [PubMed] [Google Scholar]
  53. Tournier C., Hess P., Yang D. D., Xu J., Turner T. K., Nimnual A., Bar-Sagi D., Jones S. N., Flavell R. A., Davis R. J. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science. 2000 May 5;288(5467):870–874. doi: 10.1126/science.288.5467.870. [DOI] [PubMed] [Google Scholar]
  54. Varghese J., Chattopadhaya S., Sarin A. Inhibition of p38 kinase reveals a TNF-alpha-mediated, caspase-dependent, apoptotic death pathway in a human myelomonocyte cell line. J Immunol. 2001 Jun 1;166(11):6570–6577. doi: 10.4049/jimmunol.166.11.6570. [DOI] [PubMed] [Google Scholar]
  55. Yamane T., Takahashi T., Kuwata K., Oya K., Inagake M., Kitao Y., Suganuma M., Fujiki H. Inhibition of N-methyl-N'-nitro-N-nitrosoguanidine-induced carcinogenesis by (-)-epigallocatechin gallate in the rat glandular stomach. Cancer Res. 1995 May 15;55(10):2081–2084. [PubMed] [Google Scholar]
  56. Yasuda S., Inoue K., Hirabayashi M., Higashiyama H., Yamamoto Y., Fuyuhiro H., Komure O., Tanaka F., Sobue G., Tsuchiya K. Triggering of neuronal cell death by accumulation of activated SEK1 on nuclear polyglutamine aggregations in PML bodies. Genes Cells. 1999 Dec;4(12):743–756. doi: 10.1046/j.1365-2443.1999.00294.x. [DOI] [PubMed] [Google Scholar]
  57. Yuo A. Differentiation, apoptosis, and function of human immature and mature myeloid cells: intracellular signaling mechanism. Int J Hematol. 2001 Jun;73(4):438–452. doi: 10.1007/BF02994005. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES