Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Dec 15;368(Pt 3):761–768. doi: 10.1042/BJ20020962

Regulation of intracellular glutathione levels in erythrocytes infected with chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum.

Svenja Meierjohann 1, Rolf D Walter 1, Sylke Müller 1
PMCID: PMC1223037  PMID: 12225291

Abstract

Malaria is one of the most devastating tropical diseases despite the availability of numerous drugs acting against the protozoan parasite Plasmodium in its human host. However, the development of drug resistance renders most of the existing drugs useless. In the malaria parasite the tripeptide glutathione is not only involved in maintaining an adequate intracellular redox environment and protecting the cell against oxidative stress, but it has also been shown that it degrades non-polymerized ferriprotoporphyrin IX (FP IX) and is thus implicated in the development of chloroquine resistance. Glutathione levels in Plasmodium -infected red blood cells are regulated by glutathione synthesis, glutathione reduction and glutathione efflux. Therefore the effects of drugs that interfere with these metabolic processes were studied to establish possible differences in the regulation of the glutathione metabolism of a chloroquine-sensitive and a chloroquine-resistant strain of Plasmodium falciparum. Growth inhibition of P. falciparum 3D7 by D,L-buthionine-( S, R )sulphoximine (BSO), an inhibitor of gamma-glutamylcysteine synthetase (gamma-GCS), and by Methylene Blue (MB), an inhibitor of gluta thione reductase (GR), was significantly more pronounced than inhibition of P. falciparum Dd2 growth by these drugs. These results correlate with the higher levels of total glutathione in P. falciparum Dd2. Short-term incubations of Percoll-enriched trophozoite-infected red blood cells in the presence of BSO, MB and N, N (1)-bis(2-chloroethyl)- N -nitrosourea and subsequent determinations of gamma-GCS activities, GR activities and glutathione disulphide efflux revealed that maintenance of intracellular glutathione in P. falciparum Dd2 is mainly dependent on glutathione synthesis whereas in P. falciparum 3D7 it is regulated via GR. Generally, P. falciparum Dd2 appears to be able to sustain its intracellular glutathione more efficiently than P. falciparum 3D7. In agreement with these findings is the differential susceptibility to oxidative stress of both parasite strains elicited by the glucose/glucose oxidase system.

Full Text

The Full Text of this article is available as a PDF (220.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. E. Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 1985;113:548–555. doi: 10.1016/s0076-6879(85)13073-9. [DOI] [PubMed] [Google Scholar]
  2. Atamna H., Ginsburg H. The malaria parasite supplies glutathione to its host cell--investigation of glutathione transport and metabolism in human erythrocytes infected with Plasmodium falciparum. Eur J Biochem. 1997 Dec 15;250(3):670–679. doi: 10.1111/j.1432-1033.1997.00670.x. [DOI] [PubMed] [Google Scholar]
  3. Bhakdi S., Tranum-Jensen J. Complement activation and attack on autologous cell membranes induced by streptolysin-O. Infect Immun. 1985 Jun;48(3):713–719. doi: 10.1128/iai.48.3.713-719.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Braun Breton C., Rosenberry T. L., Pereira da Silva L. H. Glycolipid anchorage of Plasmodium falciparum surface antigens. Res Immunol. 1990 Oct;141(8):743–755. doi: 10.1016/0923-2494(90)90005-j. [DOI] [PubMed] [Google Scholar]
  5. Burghaus P. A., Lingelbach K. Luciferase, when fused to an N-terminal signal peptide, is secreted from transfected Plasmodium falciparum and transported to the cytosol of infected erythrocytes. J Biol Chem. 2001 May 25;276(29):26838–26845. doi: 10.1074/jbc.M100111200. [DOI] [PubMed] [Google Scholar]
  6. Cooper Roland A., Ferdig Michael T., Su Xin-Zhuan, Ursos Lyann M. B., Mu Jianbing, Nomura Takashi, Fujioka Hisashi, Fidock David A., Roepe Paul D., Wellems Thomas E. Alternative mutations at position 76 of the vacuolar transmembrane protein PfCRT are associated with chloroquine resistance and unique stereospecific quinine and quinidine responses in Plasmodium falciparum. Mol Pharmacol. 2002 Jan;61(1):35–42. doi: 10.1124/mol.61.1.35. [DOI] [PubMed] [Google Scholar]
  7. Dubois V. L., Platel D. F., Pauly G., Tribouley-Duret J. Plasmodium berghei: implication of intracellular glutathione and its related enzyme in chloroquine resistance in vivo. Exp Parasitol. 1995 Aug;81(1):117–124. doi: 10.1006/expr.1995.1099. [DOI] [PubMed] [Google Scholar]
  8. Famin O., Krugliak M., Ginsburg H. Kinetics of inhibition of glutathione-mediated degradation of ferriprotoporphyrin IX by antimalarial drugs. Biochem Pharmacol. 1999 Jul 1;58(1):59–68. doi: 10.1016/s0006-2952(99)00059-3. [DOI] [PubMed] [Google Scholar]
  9. Fidock D. A., Nomura T., Talley A. K., Cooper R. A., Dzekunov S. M., Ferdig M. T., Ursos L. M., Sidhu A. B., Naudé B., Deitsch K. W. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol Cell. 2000 Oct;6(4):861–871. doi: 10.1016/s1097-2765(05)00077-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Färber P. M., Arscott L. D., Williams C. H., Jr, Becker K., Schirmer R. H. Recombinant Plasmodium falciparum glutathione reductase is inhibited by the antimalarial dye methylene blue. FEBS Lett. 1998 Feb 6;422(3):311–314. doi: 10.1016/s0014-5793(98)00031-3. [DOI] [PubMed] [Google Scholar]
  11. Gilberger T. W., Schirmer R. H., Walter R. D., Müller S. Deletion of the parasite-specific insertions and mutation of the catalytic triad in glutathione reductase from chloroquine-sensitive Plasmodium falciparum 3D7. Mol Biochem Parasitol. 2000 Apr 15;107(2):169–179. doi: 10.1016/s0166-6851(00)00188-2. [DOI] [PubMed] [Google Scholar]
  12. Ginsburg H., Famin O., Zhang J., Krugliak M. Inhibition of glutathione-dependent degradation of heme by chloroquine and amodiaquine as a possible basis for their antimalarial mode of action. Biochem Pharmacol. 1998 Nov 15;56(10):1305–1313. doi: 10.1016/s0006-2952(98)00184-1. [DOI] [PubMed] [Google Scholar]
  13. Grellier P., Sarlauskas J., Anusevicius Z., Maroziene A., Houee-Levin C., Schrevel J., Cenas N. Antiplasmodial activity of nitroaromatic and quinoidal compounds: redox potential vs. inhibition of erythrocyte glutathione reductase. Arch Biochem Biophys. 2001 Sep 15;393(2):199–206. doi: 10.1006/abbi.2001.2487. [DOI] [PubMed] [Google Scholar]
  14. Ishikawa T., Li Z. S., Lu Y. P., Rea P. A. The GS-X pump in plant, yeast, and animal cells: structure, function, and gene expression. Biosci Rep. 1997 Apr;17(2):189–207. doi: 10.1023/a:1027385513483. [DOI] [PubMed] [Google Scholar]
  15. Kanaani J., Ginsburg H. Metabolic interconnection between the human malarial parasite Plasmodium falciparum and its host erythrocyte. Regulation of ATP levels by means of an adenylate translocator and adenylate kinase. J Biol Chem. 1989 Feb 25;264(6):3194–3199. [PubMed] [Google Scholar]
  16. Krauth-Siegel R. L., Müller J. G., Lottspeich F., Schirmer R. H. Glutathione reductase and glutamate dehydrogenase of Plasmodium falciparum, the causative agent of tropical malaria. Eur J Biochem. 1996 Jan 15;235(1-2):345–350. doi: 10.1111/j.1432-1033.1996.00345.x. [DOI] [PubMed] [Google Scholar]
  17. Krohne-Ehrich G., Schirmer R. H., Untucht-Grau R. Glutathione reductase from human erythrocytes. Isolation of the enzyme and sequence analysis of the redox-active peptide. Eur J Biochem. 1977 Oct 17;80(1):65–71. doi: 10.1111/j.1432-1033.1977.tb11856.x. [DOI] [PubMed] [Google Scholar]
  18. Kyes S., Pinches R., Newbold C. A simple RNA analysis method shows var and rif multigene family expression patterns in Plasmodium falciparum. Mol Biochem Parasitol. 2000 Feb 5;105(2):311–315. doi: 10.1016/s0166-6851(99)00193-0. [DOI] [PubMed] [Google Scholar]
  19. Kyle D. E., Milhous W. K., Rossan R. N. Reversal of Plasmodium falciparum resistance to chloroquine in Panamanian Aotus monkeys. Am J Trop Med Hyg. 1993 Jan;48(1):126–133. doi: 10.4269/ajtmh.1993.48.126. [DOI] [PubMed] [Google Scholar]
  20. Lüersen K., Walter R. D., Müller S. Plasmodium falciparum-infected red blood cells depend on a functional glutathione de novo synthesis attributable to an enhanced loss of glutathione. Biochem J. 2000 Mar 1;346(Pt 2):545–552. [PMC free article] [PubMed] [Google Scholar]
  21. Lüersen K., Walter R. D., Müller S. The putative gamma-glutamylcysteine synthetase from Plasmodium falciparum contains large insertions and a variable tandem repeat. Mol Biochem Parasitol. 1999 Jan 5;98(1):131–142. doi: 10.1016/s0166-6851(98)00161-3. [DOI] [PubMed] [Google Scholar]
  22. Meierjohann Svenja, Walter Rolf D., Müller Sylke. Glutathione synthetase from Plasmodium falciparum. Biochem J. 2002 May 1;363(Pt 3):833–838. doi: 10.1042/0264-6021:3630833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Platel D. F., Mangou F., Tribouley-Duret J. Role of glutathione in the detoxification of ferriprotoporphyrin IX in chloroquine resistant Plasmodium berghei. Mol Biochem Parasitol. 1999 Jan 25;98(2):215–223. doi: 10.1016/s0166-6851(98)00170-4. [DOI] [PubMed] [Google Scholar]
  24. Reed M. B., Saliba K. J., Caruana S. R., Kirk K., Cowman A. F. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature. 2000 Feb 24;403(6772):906–909. doi: 10.1038/35002615. [DOI] [PubMed] [Google Scholar]
  25. Sies H. Zur Biochemie der Thiolgruppe: Bedeutung des Glutathions. Naturwissenschaften. 1989 Feb;76(2):57–64. doi: 10.1007/BF00396705. [DOI] [PubMed] [Google Scholar]
  26. Stahl W., Krauth-Siegel R. L., Schirmer R. H., Eisenbrand G. A method to determine the carbamoylating potential of 1-(2-chloroethyl)-1-nitrosoureas. IARC Sci Publ. 1987;(84):191–193. [PubMed] [Google Scholar]
  27. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969 Mar;27(3):502–522. doi: 10.1016/0003-2697(69)90064-5. [DOI] [PubMed] [Google Scholar]
  28. Worthington D. J., Rosemeyer M. A. Glutathione reductase from human erythrocytes. Catalytic properties and aggregation. Eur J Biochem. 1976 Aug 1;67(1):231–238. doi: 10.1111/j.1432-1033.1976.tb10654.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES