Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Dec 15;368(Pt 3):729–739. doi: 10.1042/BJ20021036

Copper-mediated dimerization of CopZ, a predicted copper chaperone from Bacillus subtilis.

Margaret A Kihlken 1, Andrew P Leech 1, Nick E Le Brun 1
PMCID: PMC1223043  PMID: 12238948

Abstract

Understanding the metal-binding properties and solution states of metallo-chaperones is a key step in understanding how they function in metal ion transfer. Using spectroscopic, bioanalytical and biochemical methods, we have investigated the copper-binding properties and association states of the putative copper chaperone of Bacillus subtilis, CopZ, and a variant of the protein lacking the two cysteine residues of the MXCXXC copper-binding motif. We show that copper-free CopZ exists as a monomer, but that addition of copper(I) causes the protein to associate into homodimers. The nature of the copper(I)-CopZ complex is dependent on the level of copper loading, and we report the detection of three distinct forms, containing 0.5, 1.0 and 1.5 copper(I) ions per protein. The presence of excess dithiothreitol has a significant effect on copper(I) binding to CopZ, such that, in its presence, copper(I)-CopZ occurs mainly as a monomer species. Data for copper binding to the double-cysteine variant of CopZ are consistent with an essential role for these residues in tight copper binding in the wild-type protein. We conclude that the complex nature of copper(I) binding to CopZ may underpin mechanisms of protein-to-protein copper(I) transfer.

Full Text

The Full Text of this article is available as a PDF (270.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnesano F., Banci L., Bertini I., Cantini F., Ciofi-Baffoni S., Huffman D. L., O'Halloran T. V. Characterization of the binding interface between the copper chaperone Atx1 and the first cytosolic domain of Ccc2 ATPase. J Biol Chem. 2001 Aug 10;276(44):41365–41376. doi: 10.1074/jbc.M104807200. [DOI] [PubMed] [Google Scholar]
  2. Arnesano F., Banci L., Bertini I., Huffman D. L., O'Halloran T. V. Solution structure of the Cu(I) and apo forms of the yeast metallochaperone, Atx1. Biochemistry. 2001 Feb 13;40(6):1528–1539. doi: 10.1021/bi0014711. [DOI] [PubMed] [Google Scholar]
  3. Banci L., Bertini I., Del Conte R., Markey J., Ruiz-Dueñas F. J. Copper trafficking: the solution structure of Bacillus subtilis CopZ. Biochemistry. 2001 Dec 25;40(51):15660–15668. doi: 10.1021/bi0112715. [DOI] [PubMed] [Google Scholar]
  4. Banci Lucia, Bertini Ivano, Ciofi-Baffoni Simone, D'Onofrio Mariapina, Gonnelli Leonardo, Marhuenda-Egea Frutos Carlos, Ruiz-Dueñas Francisco Javier. Solution structure of the N-terminal domain of a potential copper-translocating P-type ATPase from Bacillus subtilis in the apo and Cu(I) loaded states. J Mol Biol. 2002 Mar 29;317(3):415–429. doi: 10.1006/jmbi.2002.5430. [DOI] [PubMed] [Google Scholar]
  5. Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E. The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235–242. doi: 10.1093/nar/28.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bofill R., Palacios O., Capdevila M., Cols N., González-Duarte R., Atrian S., González-Duarte P. A new insight into the Ag+ and Cu+ binding sites in the metallothionein beta domain. J Inorg Biochem. 1999 Jan-Feb;73(1-2):57–64. doi: 10.1016/S0162-0134(98)10091-0. [DOI] [PubMed] [Google Scholar]
  7. Cobine P. A., George G. N., Winzor D. J., Harrison M. D., Mogahaddas S., Dameron C. T. Stoichiometry of complex formation between Copper(I) and the N-terminal domain of the Menkes protein. Biochemistry. 2000 Jun 13;39(23):6857–6863. doi: 10.1021/bi000015+. [DOI] [PubMed] [Google Scholar]
  8. Cobine Paul A., George Graham N., Jones Christopher E., Wickramasinghe Wasantha A., Solioz Marc, Dameron Charles T. Copper transfer from the Cu(I) chaperone, CopZ, to the repressor, Zn(II)CopY: metal coordination environments and protein interactions. Biochemistry. 2002 May 7;41(18):5822–5829. doi: 10.1021/bi025515c. [DOI] [PubMed] [Google Scholar]
  9. Dameron C. T., Winge D. R., George G. N., Sansone M., Hu S., Hamer D. A copper-thiolate polynuclear cluster in the ACE1 transcription factor. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6127–6131. doi: 10.1073/pnas.88.14.6127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Halliwell B., Gutteridge J. M. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 1990;186:1–85. doi: 10.1016/0076-6879(90)86093-b. [DOI] [PubMed] [Google Scholar]
  11. Harrison M. D., Jones C. E., Dameron C. T. Copper chaperones: function, structure and copper-binding properties. J Biol Inorg Chem. 1999 Apr;4(2):145–153. doi: 10.1007/s007750050297. [DOI] [PubMed] [Google Scholar]
  12. Hasler D. W., Faller P., Vasák M. Metal-thiolate clusters in the C-terminal domain of human neuronal growth inhibitory factor (GIF). Biochemistry. 1998 Oct 20;37(42):14966–14973. doi: 10.1021/bi9813734. [DOI] [PubMed] [Google Scholar]
  13. Heaton D. N., George G. N., Garrison G., Winge D. R. The mitochondrial copper metallochaperone Cox17 exists as an oligomeric, polycopper complex. Biochemistry. 2001 Jan 23;40(3):743–751. doi: 10.1021/bi002315x. [DOI] [PubMed] [Google Scholar]
  14. Keech A. M., Le Brun N. E., Wilson M. T., Andrews S. C., Moore G. R., Thomson A. J. Spectroscopic studies of cobalt(II) binding to Escherichia coli bacterioferritin. J Biol Chem. 1997 Jan 3;272(1):422–429. doi: 10.1074/jbc.272.1.422. [DOI] [PubMed] [Google Scholar]
  15. Labbé S., Thiele D. J. Pipes and wiring: the regulation of copper uptake and distribution in yeast. Trends Microbiol. 1999 Dec;7(12):500–505. doi: 10.1016/s0966-842x(99)01638-8. [DOI] [PubMed] [Google Scholar]
  16. Pace C. N., Vajdos F., Fee L., Grimsley G., Gray T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 1995 Nov;4(11):2411–2423. doi: 10.1002/pro.5560041120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Portnoy M. E., Rosenzweig A. C., Rae T., Huffman D. L., O'Halloran T. V., Culotta V. C. Structure-function analyses of the ATX1 metallochaperone. J Biol Chem. 1999 May 21;274(21):15041–15045. doi: 10.1074/jbc.274.21.15041. [DOI] [PubMed] [Google Scholar]
  18. Pountney D. L., Schauwecker I., Zarn J., Vasák M. Formation of mammalian Cu8-metallothionein in vitro: evidence for the existence of two Cu(I)4-thiolate clusters. Biochemistry. 1994 Aug 16;33(32):9699–9705. doi: 10.1021/bi00198a040. [DOI] [PubMed] [Google Scholar]
  19. Pufahl R. A., Singer C. P., Peariso K. L., Lin S. J., Schmidt P. J., Fahrni C. J., Culotta V. C., Penner-Hahn J. E., O'Halloran T. V. Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science. 1997 Oct 31;278(5339):853–856. doi: 10.1126/science.278.5339.853. [DOI] [PubMed] [Google Scholar]
  20. Riddles P. W., Blakeley R. L., Zerner B. Reassessment of Ellman's reagent. Methods Enzymol. 1983;91:49–60. doi: 10.1016/s0076-6879(83)91010-8. [DOI] [PubMed] [Google Scholar]
  21. Rosenzweig A. C., Huffman D. L., Hou M. Y., Wernimont A. K., Pufahl R. A., O'Halloran T. V. Crystal structure of the Atx1 metallochaperone protein at 1.02 A resolution. Structure. 1999 Jun 15;7(6):605–617. doi: 10.1016/s0969-2126(99)80082-3. [DOI] [PubMed] [Google Scholar]
  22. Rosenzweig A. C., O'Halloran T. V. Structure and chemistry of the copper chaperone proteins. Curr Opin Chem Biol. 2000 Apr;4(2):140–147. doi: 10.1016/s1367-5931(99)00066-6. [DOI] [PubMed] [Google Scholar]
  23. Sayle R. A., Milner-White E. J. RASMOL: biomolecular graphics for all. Trends Biochem Sci. 1995 Sep;20(9):374–374. doi: 10.1016/s0968-0004(00)89080-5. [DOI] [PubMed] [Google Scholar]
  24. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  25. Stillman M. J., Gasyna Z. Luminescence spectroscopy of metallothioneins. Methods Enzymol. 1991;205:540–555. doi: 10.1016/0076-6879(91)05138-l. [DOI] [PubMed] [Google Scholar]
  26. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tottey Stephen, Rondet Sabine A. M., Borrelly Gilles P. M., Robinson Pamela J., Rich Peter R., Robinson Nigel J. A copper metallochaperone for photosynthesis and respiration reveals metal-specific targets, interaction with an importer, and alternative sites for copper acquisition. J Biol Chem. 2001 Dec 5;277(7):5490–5497. doi: 10.1074/jbc.M105857200. [DOI] [PubMed] [Google Scholar]
  28. Wernimont A. K., Huffman D. L., Lamb A. L., O'Halloran T. V., Rosenzweig A. C. Structural basis for copper transfer by the metallochaperone for the Menkes/Wilson disease proteins. Nat Struct Biol. 2000 Sep;7(9):766–771. doi: 10.1038/78999. [DOI] [PubMed] [Google Scholar]
  29. Wimmer R., Herrmann T., Solioz M., Wüthrich K. NMR structure and metal interactions of the CopZ copper chaperone. J Biol Chem. 1999 Aug 6;274(32):22597–22603. doi: 10.1074/jbc.274.32.22597. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES