Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Dec 15;368(Pt 3):809–815. doi: 10.1042/BJ20021027

Dictyostelium discoideum has a single diacylglycerol kinase gene with similarity to mammalian theta isoforms.

Marc A De La Roche 1, Janet L Smith 1, Maribel Rico 1, Silvia Carrasco 1, Isabel Merida 1, Lucila Licate 1, Graham P Côté 1, Thomas T Egelhoff 1
PMCID: PMC1223045  PMID: 12296770

Abstract

Diacylglycerol kinases (DGKs) phosphorylate the neutral lipid diacylglycerol (DG) to produce phosphatidic acid (PA). In mammalian systems DGKs are a complex family of at least nine isoforms that are thought to participate in down-regulation of DG-based signalling pathways and perhaps activation of PA-stimulated signalling events. We report here that the simple protozoan amoeba Dictyostelium discoideum appears to contain a single gene encoding a DGK enzyme. This gene, dgkA, encodes a deduced protein that contains three C1-type cysteine-rich repeats, a DGK catalytic domain most closely related to the theta subtype of mammalian DGKs and a C-terminal segment containing a proline/glutamine-rich region and a large aspargine-repeat region. This gene corresponds to a previously reported myosin II heavy chain kinase designated myosin heavy chain-protein kinase C (MHC-PKC), but our analysis clearly demonstrates that this protein does not, as suggested by earlier data, contain a protein kinase catalytic domain. A FLAG-tagged version of DgkA expressed in Dictyostelium displayed robust DGK activity. Earlier studies indicating that disruption of this locus alters myosin II assembly levels in Dictyostelium raise the intriguing possibility that DG and/or PA metabolism may play a role in controlling myosin II assembly in this system.

Full Text

The Full Text of this article is available as a PDF (439.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abu-Elneel K., Karchi M., Ravid S. Dictyostelium myosin II is regulated during chemotaxis by a novel protein kinase C. J Biol Chem. 1996 Jan 12;271(2):977–984. doi: 10.1074/jbc.271.2.977. [DOI] [PubMed] [Google Scholar]
  2. Chung C. Y., Firtel R. A. PAKa, a putative PAK family member, is required for cytokinesis and the regulation of the cytoskeleton in Dictyostelium discoideum cells during chemotaxis. J Cell Biol. 1999 Nov 1;147(3):559–576. doi: 10.1083/jcb.147.3.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chung C. Y., Potikyan G., Firtel R. A. Control of cell polarity and chemotaxis by Akt/PKB and PI3 kinase through the regulation of PAKa. Mol Cell. 2001 May;7(5):937–947. doi: 10.1016/s1097-2765(01)00247-7. [DOI] [PubMed] [Google Scholar]
  4. Clancy C. E., Mendoza M. G., Naismith T. V., Kolman M. F., Egelhoff T. T. Identification of a protein kinase from Dictyostelium with homology to the novel catalytic domain of myosin heavy chain kinase A. J Biol Chem. 1997 May 2;272(18):11812–11815. doi: 10.1074/jbc.272.18.11812. [DOI] [PubMed] [Google Scholar]
  5. Côté G. P., Luo X., Murphy M. B., Egelhoff T. T. Mapping of the novel protein kinase catalytic domain of Dictyostelium myosin II heavy chain kinase A. J Biol Chem. 1997 Mar 14;272(11):6846–6849. doi: 10.1074/jbc.272.11.6846. [DOI] [PubMed] [Google Scholar]
  6. Egelhoff T. T., Lee R. J., Spudich J. A. Dictyostelium myosin heavy chain phosphorylation sites regulate myosin filament assembly and localization in vivo. Cell. 1993 Oct 22;75(2):363–371. doi: 10.1016/0092-8674(93)80077-r. [DOI] [PubMed] [Google Scholar]
  7. Firtel R. A., Chung C. Y. The molecular genetics of chemotaxis: sensing and responding to chemoattractant gradients. Bioessays. 2000 Jul;22(7):603–615. doi: 10.1002/1521-1878(200007)22:7<603::AID-BIES3>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  8. Flores I., Casaseca T., Martinez-A C., Kanoh H., Merida I. Phosphatidic acid generation through interleukin 2 (IL-2)-induced alpha-diacylglycerol kinase activation is an essential step in IL-2-mediated lymphocyte proliferation. J Biol Chem. 1996 Apr 26;271(17):10334–10340. doi: 10.1074/jbc.271.17.10334. [DOI] [PubMed] [Google Scholar]
  9. Futey L. M., Medley Q. G., Côté G. P., Egelhoff T. T. Structural analysis of myosin heavy chain kinase A from Dictyostelium. Evidence for a highly divergent protein kinase domain, an amino-terminal coiled-coil domain, and a domain homologous to the beta-subunit of heterotrimeric G proteins. J Biol Chem. 1995 Jan 13;270(2):523–529. doi: 10.1074/jbc.270.2.523. [DOI] [PubMed] [Google Scholar]
  10. Goldberg Jonathan M., Bosgraaf Leonard, Van Haastert Peter J. M., Smith Janet L. Identification of four candidate cGMP targets in Dictyostelium. Proc Natl Acad Sci U S A. 2002 May 14;99(10):6749–6754. doi: 10.1073/pnas.102167299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Houssa B., Schaap D., van der Wal J., Goto K., Kondo H., Yamakawa A., Shibata M., Takenawa T., van Blitterswijk W. J. Cloning of a novel human diacylglycerol kinase (DGKtheta) containing three cysteine-rich domains, a proline-rich region, and a pleckstrin homology domain with an overlapping Ras-associating domain. J Biol Chem. 1997 Apr 18;272(16):10422–10428. doi: 10.1074/jbc.272.16.10422. [DOI] [PubMed] [Google Scholar]
  12. Houssa B., van Blitterswijk W. J. Specificity of cysteine-rich domains in diacylglycerol kinases and protein kinases C. Biochem J. 1998 Apr 15;331(Pt 2):677–679. doi: 10.1042/bj3310677u. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hurley J. H., Newton A. C., Parker P. J., Blumberg P. M., Nishizuka Y. Taxonomy and function of C1 protein kinase C homology domains. Protein Sci. 1997 Feb;6(2):477–480. doi: 10.1002/pro.5560060228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kanoh Hideo, Yamada Keiko, Sakane Fumio. Diacylglycerol kinases: emerging downstream regulators in cell signaling systems. J Biochem. 2002 May;131(5):629–633. doi: 10.1093/oxfordjournals.jbchem.a003144. [DOI] [PubMed] [Google Scholar]
  15. Levi S., Polyakov M., Egelhoff T. T. Green fluorescent protein and epitope tag fusion vectors for Dictyostelium discoideum. Plasmid. 2000 Nov;44(3):231–238. doi: 10.1006/plas.2000.1487. [DOI] [PubMed] [Google Scholar]
  16. Liang Wenchuan, Licate Lucila, Warrick Hans, Spudich James, Egelhoff Thomas. Differential localization in cells of myosin II heavy chain kinases during cytokinesis and polarized migration. BMC Cell Biol. 2002 Jul 24;3:19–19. doi: 10.1186/1471-2121-3-19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Luo X., Crawley S. W., Steimle P. A., Egelhoff T. T., Cote G. P. Specific phosphorylation of threonine by the Dictyostelium myosin II heavy chain kinase family. J Biol Chem. 2001 Feb 20;276(21):17836–17843. doi: 10.1074/jbc.M009366200. [DOI] [PubMed] [Google Scholar]
  18. Nellen W., Datta S., Reymond C., Sivertsen A., Mann S., Crowley T., Firtel R. A. Molecular biology in Dictyostelium: tools and applications. Methods Cell Biol. 1987;28:67–100. doi: 10.1016/s0091-679x(08)61637-4. [DOI] [PubMed] [Google Scholar]
  19. Ravid S., Spudich J. A. Membrane-bound Dictyostelium myosin heavy chain kinase: a developmentally regulated substrate-specific member of the protein kinase C family. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5877–5881. doi: 10.1073/pnas.89.13.5877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ravid S., Spudich J. A. Myosin heavy chain kinase from developed Dictyostelium cells. Purification and characterization. J Biol Chem. 1989 Sep 5;264(25):15144–15150. [PubMed] [Google Scholar]
  21. Ryazanov A. G., Pavur K. S., Dorovkov M. V. Alpha-kinases: a new class of protein kinases with a novel catalytic domain. Curr Biol. 1999 Jan 28;9(2):R43–R45. doi: 10.1016/s0960-9822(99)80006-2. [DOI] [PubMed] [Google Scholar]
  22. Sabry J. H., Moores S. L., Ryan S., Zang J. H., Spudich J. A. Myosin heavy chain phosphorylation sites regulate myosin localization during cytokinesis in live cells. Mol Biol Cell. 1997 Dec;8(12):2605–2615. doi: 10.1091/mbc.8.12.2605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Steimle P. A., Naismith T., Licate L., Egelhoff T. T. WD repeat domains target dictyostelium myosin heavy chain kinases by binding directly to myosin filaments. J Biol Chem. 2000 Dec 5;276(9):6853–6860. doi: 10.1074/jbc.M008992200. [DOI] [PubMed] [Google Scholar]
  24. Thanos C. D., Bowie J. U. Developmentally expressed myosin heavy-chain kinase possesses a diacylglycerol kinase domain. Protein Sci. 1996 Apr;5(4):782–785. doi: 10.1002/pro.5560050424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Topham M. K., Prescott S. M. Mammalian diacylglycerol kinases, a family of lipid kinases with signaling functions. J Biol Chem. 1999 Apr 23;274(17):11447–11450. doi: 10.1074/jbc.274.17.11447. [DOI] [PubMed] [Google Scholar]
  26. Vaillancourt J. P., Lyons C., Côté G. P. Identification of two phosphorylated threonines in the tail region of Dictyostelium myosin II. J Biol Chem. 1988 Jul 25;263(21):10082–10087. [PubMed] [Google Scholar]
  27. Walker A. J., Draeger A., Houssa B., van Blitterswijk W. J., Ohanian V., Ohanian J. Diacylglycerol kinase theta is translocated and phosphoinositide 3-kinase-dependently activated by noradrenaline but not angiotensin II in intact small arteries. Biochem J. 2001 Jan 1;353(Pt 1):129–137. [PMC free article] [PubMed] [Google Scholar]
  28. van Blitterswijk W. J., Houssa B. Diacylglycerol kinases in signal transduction. Chem Phys Lipids. 1999 Apr;98(1-2):95–108. doi: 10.1016/s0009-3084(99)00022-5. [DOI] [PubMed] [Google Scholar]
  29. van Blitterswijk W. J., Houssa B. Properties and functions of diacylglycerol kinases. Cell Signal. 2000 Oct;12(9-10):595–605. doi: 10.1016/s0898-6568(00)00113-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES