Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Dec 15;368(Pt 3):835–843. doi: 10.1042/BJ20021003

The Escherichia coli cAMP receptor protein bound at a single target can activate transcription initiation at divergent promoters: a systematic study that exploits new promoter probe plasmids.

Mohamed Samir El-Robh 1, Stephen J W Busby 1
PMCID: PMC1223047  PMID: 12350222

Abstract

We report the first detailed quantitative study of divergent promoters dependent on the Escherichia coli cAMP receptor protein (CRP), a factor known to activate transcription initiation at target promoters by making direct interactions with the RNA polymerase holoenzyme. In this work, we show that CRP bound at a single target site is able to activate transcription at two divergently organized promoters. Experiments using promoter probe plasmids, designed to study divergent promoters in vivo and in vitro, show that the divergent promoters function independently. Further in vitro experiments show that two holo RNA polymerase molecules cannot be accommodated simultaneously at the divergent promoters.

Full Text

The Full Text of this article is available as a PDF (278.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belyaeva T. A., Rhodius V. A., Webster C. L., Busby S. J. Transcription activation at promoters carrying tandem DNA sites for the Escherichia coli cyclic AMP receptor protein: organisation of the RNA polymerase alpha subunits. J Mol Biol. 1998 Apr 10;277(4):789–804. doi: 10.1006/jmbi.1998.1666. [DOI] [PubMed] [Google Scholar]
  2. Buchet A., Nasser W., Eichler K., Mandrand-Berthelot M. A. Positive co-regulation of the Escherichia coli carnitine pathway cai and fix operons by CRP and the CaiF activator. Mol Microbiol. 1999 Nov;34(3):562–575. doi: 10.1046/j.1365-2958.1999.01622.x. [DOI] [PubMed] [Google Scholar]
  3. Busby S., Ebright R. H. Transcription activation at class II CAP-dependent promoters. Mol Microbiol. 1997 Mar;23(5):853–859. doi: 10.1046/j.1365-2958.1997.2771641.x. [DOI] [PubMed] [Google Scholar]
  4. Busby S., Ebright R. H. Transcription activation by catabolite activator protein (CAP). J Mol Biol. 1999 Oct 22;293(2):199–213. doi: 10.1006/jmbi.1999.3161. [DOI] [PubMed] [Google Scholar]
  5. Busby S., Kotlarz D., Buc H. Deletion mutagenesis of the Escherichia coli galactose operon promoter region. J Mol Biol. 1983 Jun 25;167(2):259–274. doi: 10.1016/s0022-2836(83)80335-0. [DOI] [PubMed] [Google Scholar]
  6. Casadaban M. J., Cohen S. N. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol. 1980 Apr;138(2):179–207. doi: 10.1016/0022-2836(80)90283-1. [DOI] [PubMed] [Google Scholar]
  7. Ebright R. H. Transcription activation at Class I CAP-dependent promoters. Mol Microbiol. 1993 May;8(5):797–802. doi: 10.1111/j.1365-2958.1993.tb01626.x. [DOI] [PubMed] [Google Scholar]
  8. Ferrández A., García J. L., Díaz E. Transcriptional regulation of the divergent paa catabolic operons for phenylacetic acid degradation in Escherichia coli. J Biol Chem. 2000 Apr 21;275(16):12214–12222. doi: 10.1074/jbc.275.16.12214. [DOI] [PubMed] [Google Scholar]
  9. Gaston K., Bell A., Kolb A., Buc H., Busby S. Stringent spacing requirements for transcription activation by CRP. Cell. 1990 Aug 24;62(4):733–743. doi: 10.1016/0092-8674(90)90118-x. [DOI] [PubMed] [Google Scholar]
  10. Ghosaini L. R., Brown A. M., Sturtevant J. M. Scanning calorimetric study of the thermal unfolding of catabolite activator protein from Escherichia coli in the absence and presence of cyclic mononucleotides. Biochemistry. 1988 Jul 12;27(14):5257–5261. doi: 10.1021/bi00414a046. [DOI] [PubMed] [Google Scholar]
  11. Holcroft C. C., Egan S. M. Roles of cyclic AMP receptor protein and the carboxyl-terminal domain of the alpha subunit in transcription activation of the Escherichia coli rhaBAD operon. J Bacteriol. 2000 Jun;182(12):3529–3535. doi: 10.1128/jb.182.12.3529-3535.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hutchings M. I., Drabble W. T. Regulation of the divergent guaBA and xseA promoters of Escherichia coli by the cyclic AMP receptor protein. FEMS Microbiol Lett. 2000 Jun 15;187(2):115–122. doi: 10.1111/j.1574-6968.2000.tb09146.x. [DOI] [PubMed] [Google Scholar]
  13. Izu H., Ito S., Elias M. D., Yamada M. Differential control by IHF and cAMP of two oppositely oriented genes, hpt and gcd, in Escherichia coli: significance of their partially overlapping regulatory elements. Mol Genet Genomics. 2001 Nov 21;266(5):865–872. doi: 10.1007/s00438-001-0608-7. [DOI] [PubMed] [Google Scholar]
  14. Kahl B. F., Paule M. R. The use of diethyl pyrocarbonate and potassium permanganate as probes for strand separation and structural distortions in DNA. Methods Mol Biol. 2001;148:63–75. doi: 10.1385/1-59259-208-2:063. [DOI] [PubMed] [Google Scholar]
  15. Kolb A., Kotlarz D., Kusano S., Ishihama A. Selectivity of the Escherichia coli RNA polymerase E sigma 38 for overlapping promoters and ability to support CRP activation. Nucleic Acids Res. 1995 Mar 11;23(5):819–826. doi: 10.1093/nar/23.5.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lodge J., Fear J., Busby S., Gunasekaran P., Kamini N. R. Broad host range plasmids carrying the Escherichia coli lactose and galactose operons. FEMS Microbiol Lett. 1992 Aug 15;74(2-3):271–276. doi: 10.1016/0378-1097(92)90441-p. [DOI] [PubMed] [Google Scholar]
  17. Lonetto M. A., Rhodius V., Lamberg K., Kiley P., Busby S., Gross C. Identification of a contact site for different transcription activators in region 4 of the Escherichia coli RNA polymerase sigma70 subunit. J Mol Biol. 1998 Dec 18;284(5):1353–1365. doi: 10.1006/jmbi.1998.2268. [DOI] [PubMed] [Google Scholar]
  18. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  19. Plumbridge J. DNA binding sites for the Mlc and NagC proteins: regulation of nagE, encoding the N-acetylglucosamine-specific transporter in Escherichia coli. Nucleic Acids Res. 2001 Jan 15;29(2):506–514. doi: 10.1093/nar/29.2.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Podolny V., Lin E. C., Hochschild A. A cyclic AMP receptor protein mutant that constitutively activates an Escherichia coli promoter disrupted by an IS5 insertion. J Bacteriol. 1999 Dec;181(24):7457–7463. doi: 10.1128/jb.181.24.7457-7463.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stoker N. G., Fairweather N. F., Spratt B. G. Versatile low-copy-number plasmid vectors for cloning in Escherichia coli. Gene. 1982 Jun;18(3):335–341. doi: 10.1016/0378-1119(82)90172-x. [DOI] [PubMed] [Google Scholar]
  22. West D., Williams R., Rhodius V., Bell A., Sharma N., Zou C., Fujita N., Ishihama A., Busby S. Interactions between the Escherichia coli cyclic AMP receptor protein and RNA polymerase at class II promoters. Mol Microbiol. 1993 Nov;10(4):789–797. doi: 10.1111/j.1365-2958.1993.tb00949.x. [DOI] [PubMed] [Google Scholar]
  23. Weyand N. J., Braaten B. A., van der Woude M., Tucker J., Low D. A. The essential role of the promoter-proximal subunit of CAP in pap phase variation: Lrp- and helical phase-dependent activation of papBA transcription by CAP from -215. Mol Microbiol. 2001 Mar;39(6):1504–1522. doi: 10.1046/j.1365-2958.2001.02338.x. [DOI] [PubMed] [Google Scholar]
  24. Zukowski M. M., Gaffney D. F., Speck D., Kauffmann M., Findeli A., Wisecup A., Lecocq J. P. Chromogenic identification of genetic regulatory signals in Bacillus subtilis based on expression of a cloned Pseudomonas gene. Proc Natl Acad Sci U S A. 1983 Feb;80(4):1101–1105. doi: 10.1073/pnas.80.4.1101. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES