Abstract
In pancreatic beta-cells, methyl pyruvate is a potent secretagogue and is widely used to study stimulus-secretion coupling. In contrast with pyruvate, which barely stimulates insulin secretion, methyl pyruvate was suggested to act as an effective mitochondrial substrate. We show that methyl pyruvate elicited electrical activity in the presence of 0.5 mM glucose, in contrast with pyruvate. Accordingly, methyl pyruvate increased the cytosolic free Ca(2+) concentration after an initial decrease, similar to glucose. The initial decrease was inhibited by thapsigargin, suggesting that methyl pyruvate stimulates ATP production. This assumption is supported by the observation that methyl pyruvate hyperpolarized the mitochondrial membrane potential, similar to glucose. However, in contrast with glucose, methyl pyruvate even slightly decreased NAD(P)H autofluorescence and did not influence ATP production or the ATP/ADP ratio. This observation questions the suggestion that methyl pyruvate acts as a powerful mitochondrial substrate. The finding that methyl pyruvate directly inhibited a cation current across the inner membrane of Jurkat T-lymphocyte mitochondria suggests that this metabolite may increase ATP production in beta-cells by activating the respiratory chains without providing reduction equivalents. We conclude that this mechanism may account for a slight and transient increase in ATP production. We further show that methyl pyruvate inhibited the K(ATP) current measured in the standard whole-cell configuration, an effect that was at least partly antagonized by diazoxide. Accordingly, single-channel currents in inside-out patches were blocked by methyl pyruvate. We conclude that inhibition of K(ATP) channels, and not activation of metabolism, mediates the induction of electrical activity in pancreatic beta-cells by methyl pyruvate.
Full Text
The Full Text of this article is available as a PDF (199.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashcroft F. M., Rorsman P. Electrophysiology of the pancreatic beta-cell. Prog Biophys Mol Biol. 1989;54(2):87–143. doi: 10.1016/0079-6107(89)90013-8. [DOI] [PubMed] [Google Scholar]
- Bajgar R., Seetharaman S., Kowaltowski A. J., Garlid K. D., Paucek P. Identification and properties of a novel intracellular (mitochondrial) ATP-sensitive potassium channel in brain. J Biol Chem. 2001 Jul 5;276(36):33369–33374. doi: 10.1074/jbc.M103320200. [DOI] [PubMed] [Google Scholar]
- Coe E. L., Strunk R. C. The effect of oxamate on glycolysis in intact ascites tumor cells. I. Kinetic evidence for a dual glycolytic system. Biochim Biophys Acta. 1970 May 12;208(2):189–202. doi: 10.1016/0304-4165(70)90237-0. [DOI] [PubMed] [Google Scholar]
- Drews G., Krämer C., Düfer M., Krippeit-Drews P. Contrasting effects of alloxan on islets and single mouse pancreatic beta-cells. Biochem J. 2000 Dec 1;352(Pt 2):389–397. [PMC free article] [PubMed] [Google Scholar]
- Duchen M. R., Smith P. A., Ashcroft F. M. Substrate-dependent changes in mitochondrial function, intracellular free calcium concentration and membrane channels in pancreatic beta-cells. Biochem J. 1993 Aug 15;294(Pt 1):35–42. doi: 10.1042/bj2940035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dukes I. D., McIntyre M. S., Mertz R. J., Philipson L. H., Roe M. W., Spencer B., Worley J. F., 3rd Dependence on NADH produced during glycolysis for beta-cell glucose signaling. J Biol Chem. 1994 Apr 15;269(15):10979–10982. [PubMed] [Google Scholar]
- Dukes I. D., Sreenan S., Roe M. W., Levisetti M., Zhou Y. P., Ostrega D., Bell G. I., Pontoglio M., Yaniv M., Philipson L. Defective pancreatic beta-cell glycolytic signaling in hepatocyte nuclear factor-1alpha-deficient mice. J Biol Chem. 1998 Sep 18;273(38):24457–24464. doi: 10.1074/jbc.273.38.24457. [DOI] [PubMed] [Google Scholar]
- Düfer Martina, Krippeit-Drews Peter, Drews Gisela. Inhibition of mitochondrial function affects cellular Ca2+ handling in pancreatic B-cells. Pflugers Arch. 2002 Mar 2;444(1-2):236–243. doi: 10.1007/s00424-002-0799-8. [DOI] [PubMed] [Google Scholar]
- Eto K., Tsubamoto Y., Terauchi Y., Sugiyama T., Kishimoto T., Takahashi N., Yamauchi N., Kubota N., Murayama S., Aizawa T. Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. Science. 1999 Feb 12;283(5404):981–985. doi: 10.1126/science.283.5404.981. [DOI] [PubMed] [Google Scholar]
- Garrino M. G., Plant T. D., Henquin J. C. Effects of putative activators of K+ channels in mouse pancreatic beta-cells. Br J Pharmacol. 1989 Nov;98(3):957–965. doi: 10.1111/j.1476-5381.1989.tb14626.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grapengiesser E., Gylfe E., Hellman B. Dual effect of glucose on cytoplasmic Ca2+ in single pancreatic beta-cells. Biochem Biophys Res Commun. 1988 Jan 15;150(1):419–425. doi: 10.1016/0006-291x(88)90537-2. [DOI] [PubMed] [Google Scholar]
- Grimmsmann T., Rustenbeck I. Direct effects of diazoxide on mitochondria in pancreatic B-cells and on isolated liver mitochondria. Br J Pharmacol. 1998 Mar;123(5):781–788. doi: 10.1038/sj.bjp.0701663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Inoue I., Nagase H., Kishi K., Higuti T. ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature. 1991 Jul 18;352(6332):244–247. doi: 10.1038/352244a0. [DOI] [PubMed] [Google Scholar]
- Ishihara H., Wang H., Drewes L. R., Wollheim C. B. Overexpression of monocarboxylate transporter and lactate dehydrogenase alters insulin secretory responses to pyruvate and lactate in beta cells. J Clin Invest. 1999 Dec;104(11):1621–1629. doi: 10.1172/JCI7515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jijakli H., Nadi A. B., Cook L., Best L., Sener A., Malaisse W. J. Insulinotropic action of methyl pyruvate: enzymatic and metabolic aspects. Arch Biochem Biophys. 1996 Nov 15;335(2):245–257. doi: 10.1006/abbi.1996.0505. [DOI] [PubMed] [Google Scholar]
- Krippeit-Drews P., Düfer M., Drews G. Parallel oscillations of intracellular calcium activity and mitochondrial membrane potential in mouse pancreatic B-cells. Biochem Biophys Res Commun. 2000 Jan 7;267(1):179–183. doi: 10.1006/bbrc.1999.1921. [DOI] [PubMed] [Google Scholar]
- Leclercq-Meyer V., Garcia-Martinez J. A., Villanueva-Peñacarrillo M. L., Valverde I., Malaisse W. J. In vitro and in vivo insulinotropic action of methyl pyruvate. Horm Metab Res. 1995 Nov;27(11):477–481. doi: 10.1055/s-2007-980006. [DOI] [PubMed] [Google Scholar]
- Lembert N., Joos H. C., Idahl L. A., Ammon H. P., Wahl M. A. Methyl pyruvate initiates membrane depolarization and insulin release by metabolic factors other than ATP. Biochem J. 2001 Mar 1;354(Pt 2):345–350. doi: 10.1042/0264-6021:3540345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lenzen S. Effects of alpha-ketocarboxylic acids and 4-pentenoic acid on insulin secretion from the perfused rat pancreas. Biochem Pharmacol. 1978 May 1;27(9):1321–1324. doi: 10.1016/0006-2952(78)90114-4. [DOI] [PubMed] [Google Scholar]
- Lenzen S., Lerch M., Peckmann T., Tiedge M. Differential regulation of [Ca2+]i oscillations in mouse pancreatic islets by glucose, alpha-ketoisocaproic acid, glyceraldehyde and glycolytic intermediates. Biochim Biophys Acta. 2000 Sep 1;1523(1):65–72. doi: 10.1016/s0304-4165(00)00100-8. [DOI] [PubMed] [Google Scholar]
- MacDonald Michael J., Kelley Parker C., Laclau Muriel. Histochemical evidence for pathways insulin cells use to oxidize glycolysis-derived NADH. Metabolism. 2002 Mar;51(3):318–321. doi: 10.1053/meta.2002.29960. [DOI] [PubMed] [Google Scholar]
- Maechler P., Wollheim C. B. Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis. Nature. 1999 Dec 9;402(6762):685–689. doi: 10.1038/45280. [DOI] [PubMed] [Google Scholar]
- Malaisse W. J., Jijakli H., Ulusoy S., Cook L., Best L., Viñambres C., Villanueva-Peñacarrillo M. L., Valverde I., Sener A. Insulinotropic action of methyl pyruvate: secretory, cationic, and biosynthetic aspects. Arch Biochem Biophys. 1996 Nov 15;335(2):229–244. doi: 10.1006/abbi.1996.0504. [DOI] [PubMed] [Google Scholar]
- Mertz R. J., Worley J. F., Spencer B., Johnson J. H., Dukes I. D. Activation of stimulus-secretion coupling in pancreatic beta-cells by specific products of glucose metabolism. Evidence for privileged signaling by glycolysis. J Biol Chem. 1996 Mar 1;271(9):4838–4845. doi: 10.1074/jbc.271.9.4838. [DOI] [PubMed] [Google Scholar]
- Paucek P., Mironova G., Mahdi F., Beavis A. D., Woldegiorgis G., Garlid K. D. Reconstitution and partial purification of the glibenclamide-sensitive, ATP-dependent K+ channel from rat liver and beef heart mitochondria. J Biol Chem. 1992 Dec 25;267(36):26062–26069. [PubMed] [Google Scholar]
- Plant T. D. Properties and calcium-dependent inactivation of calcium currents in cultured mouse pancreatic B-cells. J Physiol. 1988 Oct;404:731–747. doi: 10.1113/jphysiol.1988.sp017316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schöfl C., Börger J., Lange S., von zur Mühlen A., Brabant G. Energetic requirement of carbachol-induced Ca2+ signaling in single mouse beta-cells. Endocrinology. 2000 Nov;141(11):4065–4071. doi: 10.1210/endo.141.11.7741. [DOI] [PubMed] [Google Scholar]
- Sekine N., Cirulli V., Regazzi R., Brown L. J., Gine E., Tamarit-Rodriguez J., Girotti M., Marie S., MacDonald M. J., Wollheim C. B. Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic beta-cells. Potential role in nutrient sensing. J Biol Chem. 1994 Feb 18;269(7):4895–4902. [PubMed] [Google Scholar]
- Sener A., Kawazu S., Hutton J. C., Boschero A. C., Devis G., Somers G., Herchuelz A., Malaisse W. J. The stimulus-secretion coupling of glucose-induced insulin release. Effect of exogenous pyruvate on islet function. Biochem J. 1978 Oct 15;176(1):217–232. doi: 10.1042/bj1760217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siemen D., Loupatatzis C., Borecky J., Gulbins E., Lang F. Ca2+-activated K channel of the BK-type in the inner mitochondrial membrane of a human glioma cell line. Biochem Biophys Res Commun. 1999 Apr 13;257(2):549–554. doi: 10.1006/bbrc.1999.0496. [DOI] [PubMed] [Google Scholar]
- Smith P. A., Proks P., Moorhouse A. Direct effects of tolbutamide on mitochondrial function, intracellular Ca2+ and exocytosis in pancreatic beta-cells. Pflugers Arch. 1999 Mar;437(4):577–588. doi: 10.1007/s004240050820. [DOI] [PubMed] [Google Scholar]
- Zawalich W. S., Zawalich K. C. Influence of pyruvic acid methyl ester on rat pancreatic islets. Effects on insulin secretion, phosphoinositide hydrolysis, and sensitization of the beta cell. J Biol Chem. 1997 Feb 7;272(6):3527–3531. doi: 10.1074/jbc.272.6.3527. [DOI] [PubMed] [Google Scholar]
- Zhou Z., Misler S. Amperometric detection of quantal secretion from patch-clamped rat pancreatic beta-cells. J Biol Chem. 1996 Jan 5;271(1):270–277. doi: 10.1074/jbc.271.1.270. [DOI] [PubMed] [Google Scholar]