Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jan 1;369(Pt 1):39–44. doi: 10.1042/BJ20021217

Solution structure of a chemosensory protein from the moth Mamestra brassicae.

Amor Mosbah 1, Valérie Campanacci 1, Audrey Lartigue 1, Mariella Tegoni 1, Christian Cambillau 1, Hervé Darbon 1
PMCID: PMC1223053  PMID: 12217077

Abstract

Chemosensory proteins (CSPs) are believed to be involved in chemical communication and perception. A number of such proteins, of molecular mass approximately 13 kDa, have been isolated from different sensory organs of a wide range of insect species. Several CSPs have been identified in the antennae and proboscis of the moth Mamestra brassicae. CSPMbraA6, a 112-amino-acid antennal protein, has been expressed in a soluble form in large quantities in the Escherichi coli periplasm. NMR structure determination of CSPMbraA6 has been performed with 1H- and 15N-labelled samples. The calculated structures present an average root mean square deviation about the mean structure of 0.63 A for backbone atoms and 1.27 A for all non-hydrogen atoms except the 12 N-terminal residues. The protein is well folded from residue 12 to residue 110, and consists of a non-bundle alpha-helical structure with six helices connected by alpha alpha loops. It has a globular shape, with overall dimensions of 32 A x 28 A x 24 A. A channel is visible in the hydrophobic core, with dimensions of 3 A x 9 A x 21 A. In some of the 20 solution structures calculated, this channel is closed either by Trp-94 at one end or by Tyr-26 at the other end; in some other solutions, this channel is closed at both ends. Binding experiments with 12-bromododecanol indicate that the CSPMbraA6 structure is modified upon ligand binding.

Full Text

The Full Text of this article is available as a PDF (264.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. D., Celniker S. E., Holt R. A., Evans C. A., Gocayne J. D., Amanatides P. G., Scherer S. E., Li P. W., Hoskins R. A., Galle R. F. The genome sequence of Drosophila melanogaster. Science. 2000 Mar 24;287(5461):2185–2195. doi: 10.1126/science.287.5461.2185. [DOI] [PubMed] [Google Scholar]
  2. Angeli S., Ceron F., Scaloni A., Monti M., Monteforti G., Minnocci A., Petacchi R., Pelosi P. Purification, structural characterization, cloning and immunocytochemical localization of chemoreception proteins from Schistocerca gregaria. Eur J Biochem. 1999 Jun;262(3):745–754. doi: 10.1046/j.1432-1327.1999.00438.x. [DOI] [PubMed] [Google Scholar]
  3. Balendiran G. K., Schnutgen F., Scapin G., Borchers T., Xhong N., Lim K., Godbout R., Spener F., Sacchettini J. C. Crystal structure and thermodynamic analysis of human brain fatty acid-binding protein. J Biol Chem. 2000 Sep 1;275(35):27045–27054. doi: 10.1074/jbc.M003001200. [DOI] [PubMed] [Google Scholar]
  4. Ban Liping, Zhang Long, Yan Yuhua, Pelosi Paolo. Binding properties of a locust's chemosensory protein. Biochem Biophys Res Commun. 2002 Apr 26;293(1):50–54. doi: 10.1016/S0006-291X(02)00185-7. [DOI] [PubMed] [Google Scholar]
  5. Bohbot J., Sobrio F., Lucas P., Nagnan-Le Meillour P. Functional characterization of a new class of odorant-binding proteins in the moth Mamestra brassicae. Biochem Biophys Res Commun. 1998 Dec 18;253(2):489–494. doi: 10.1006/bbrc.1998.9806. [DOI] [PubMed] [Google Scholar]
  6. Brünger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M., Pannu N. S. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905–921. doi: 10.1107/s0907444998003254. [DOI] [PubMed] [Google Scholar]
  7. Campanacci V., Krieger J., Bette S., Sturgis J. N., Lartigue A., Cambillau C., Breer H., Tegoni M. Revisiting the specificity of Mamestra brassicae and Antheraea polyphemus pheromone-binding proteins with a fluorescence binding assay. J Biol Chem. 2001 Mar 27;276(23):20078–20084. doi: 10.1074/jbc.M100713200. [DOI] [PubMed] [Google Scholar]
  8. Campanacci V., Mosbah A., Bornet O., Wechselberger R., Jacquin-Joly E., Cambillau C., Darbon H., Tegoni M. Chemosensory protein from the moth Mamestra brassicae. Expression and secondary structure from 1H and 15N NMR. Eur J Biochem. 2001 Sep;268(17):4731–4739. doi: 10.1046/j.1432-1327.2001.02398.x. [DOI] [PubMed] [Google Scholar]
  9. Dyanov H. M., Dzitoeva S. G. Method for attachment of microscopic preparations on glass for in situ hybridization, PRINS and in situ PCR studies. Biotechniques. 1995 May;18(5):822-4, 826. [PubMed] [Google Scholar]
  10. Flower D. R., North A. C., Sansom C. E. The lipocalin protein family: structural and sequence overview. Biochim Biophys Acta. 2000 Oct 18;1482(1-2):9–24. doi: 10.1016/s0167-4838(00)00148-5. [DOI] [PubMed] [Google Scholar]
  11. Gincel E., Simorre J. P., Caille A., Marion D., Ptak M., Vovelle F. Three-dimensional structure in solution of a wheat lipid-transfer protein from multidimensional 1H-NMR data. A new folding for lipid carriers. Eur J Biochem. 1994 Dec 1;226(2):413–422. doi: 10.1111/j.1432-1033.1994.tb20066.x. [DOI] [PubMed] [Google Scholar]
  12. Gomar J., Petit M. C., Sodano P., Sy D., Marion D., Kader J. C., Vovelle F., Ptak M. Solution structure and lipid binding of a nonspecific lipid transfer protein extracted from maize seeds. Protein Sci. 1996 Apr;5(4):565–577. doi: 10.1002/pro.5560050402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Güntert P., Mumenthaler C., Wüthrich K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol. 1997 Oct 17;273(1):283–298. doi: 10.1006/jmbi.1997.1284. [DOI] [PubMed] [Google Scholar]
  14. Holm L., Sander C. Touring protein fold space with Dali/FSSP. Nucleic Acids Res. 1998 Jan 1;26(1):316–319. doi: 10.1093/nar/26.1.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jacquin-Joly E., Vogt R. G., François M. C., Nagnan-Le Meillour P. Functional and expression pattern analysis of chemosensory proteins expressed in antennae and pheromonal gland of Mamestra brassicae. Chem Senses. 2001 Sep;26(7):833–844. doi: 10.1093/chemse/26.7.833. [DOI] [PubMed] [Google Scholar]
  16. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  17. Kurihara K., Koyama N. High activity of adenyl cyclase in olfactory and gustatory organs. Biochem Biophys Res Commun. 1972 Jul 11;48(1):30–34. doi: 10.1016/0006-291x(72)90339-7. [DOI] [PubMed] [Google Scholar]
  18. Lartigue Audrey, Campanacci Valérie, Roussel Alain, Larsson Anna M., Jones T. Alwyn, Tegoni Mariella, Cambillau Christian. X-ray structure and ligand binding study of a moth chemosensory protein. J Biol Chem. 2002 Jun 14;277(35):32094–32098. doi: 10.1074/jbc.M204371200. [DOI] [PubMed] [Google Scholar]
  19. Laskowski R. A., Rullmannn J. A., MacArthur M. W., Kaptein R., Thornton J. M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR. 1996 Dec;8(4):477–486. doi: 10.1007/BF00228148. [DOI] [PubMed] [Google Scholar]
  20. Lerche M. H., Kragelund B. B., Bech L. M., Poulsen F. M. Barley lipid-transfer protein complexed with palmitoyl CoA: the structure reveals a hydrophobic binding site that can expand to fit both large and small lipid-like ligands. Structure. 1997 Feb 15;5(2):291–306. doi: 10.1016/s0969-2126(97)00186-x. [DOI] [PubMed] [Google Scholar]
  21. Maleszka R., Stange G. Molecular cloning, by a novel approach, of a cDNA encoding a putative olfactory protein in the labial palps of the moth Cactoblastis cactorum. Gene. 1997 Nov 20;202(1-2):39–43. doi: 10.1016/s0378-1119(97)00448-4. [DOI] [PubMed] [Google Scholar]
  22. Mameli M., Tuccini A., Mazza M., Petacchi R., Pelosi P. Soluble proteins in chemosensory organs of phasmids. Insect Biochem Mol Biol. 1996 Sep-Oct;26(8-9):875–882. doi: 10.1016/s0965-1748(96)00055-0. [DOI] [PubMed] [Google Scholar]
  23. Marchese S., Angeli S., Andolfo A., Scaloni A., Brandazza A., Mazza M., Picimbon J., Leal W. S., Pelosi P. Soluble proteins from chemosensory organs of Eurycantha calcarata (Insects, Phasmatodea). Insect Biochem Mol Biol. 2000 Nov;30(11):1091–1098. doi: 10.1016/s0965-1748(00)00084-9. [DOI] [PubMed] [Google Scholar]
  24. McKenna M. P., Hekmat-Scafe D. S., Gaines P., Carlson J. R. Putative Drosophila pheromone-binding proteins expressed in a subregion of the olfactory system. J Biol Chem. 1994 Jun 10;269(23):16340–16347. [PubMed] [Google Scholar]
  25. Nagnan-Le Meillour P., Cain A. H., Jacquin-Joly E., François M. C., Ramachandran S., Maida R., Steinbrecht R. A. Chemosensory proteins from the proboscis of mamestra brassicae. Chem Senses. 2000 Oct;25(5):541–553. doi: 10.1093/chemse/25.5.541. [DOI] [PubMed] [Google Scholar]
  26. Nomura A., Kawasaki K., Kubo T., Natori S. Purification and localization of p10, a novel protein that increases in nymphal regenerating legs of Periplaneta americana (American cockroach). Int J Dev Biol. 1992 Sep;36(3):391–398. [PubMed] [Google Scholar]
  27. Oliva B., Bates P. A., Querol E., Avilés F. X., Sternberg M. J. An automated classification of the structure of protein loops. J Mol Biol. 1997 Mar 7;266(4):814–830. doi: 10.1006/jmbi.1996.0819. [DOI] [PubMed] [Google Scholar]
  28. Pace U., Lancet D. Olfactory GTP-binding protein: signal-transducing polypeptide of vertebrate chemosensory neurons. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4947–4951. doi: 10.1073/pnas.83.13.4947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Paesen G. C., Happ G. M. The B proteins secreted by the tubular accessory sex glands of the male mealworm beetle, Tenebrio molitor, have sequence similarity to moth pheromone-binding proteins. Insect Biochem Mol Biol. 1995 Mar;25(3):401–408. doi: 10.1016/0965-1748(94)00085-v. [DOI] [PubMed] [Google Scholar]
  30. Pelosi P. Perireceptor events in olfaction. J Neurobiol. 1996 May;30(1):3–19. doi: 10.1002/(SICI)1097-4695(199605)30:1<3::AID-NEU2>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  31. Picimbon J. F., Dietrich K., Angeli S., Scaloni A., Krieger J., Breer H., Pelosi P. Purification and molecular cloning of chemosensory proteins from Bombyx mori. Arch Insect Biochem Physiol. 2000 Jul;44(3):120–129. doi: 10.1002/1520-6327(200007)44:3<120::AID-ARCH3>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  32. Picimbon J. F., Dietrich K., Breer H., Krieger J. Chemosensory proteins of Locusta migratoria (Orthoptera: Acrididae). Insect Biochem Mol Biol. 2000 Mar;30(3):233–241. doi: 10.1016/s0965-1748(99)00121-6. [DOI] [PubMed] [Google Scholar]
  33. Pikielny C. W., Hasan G., Rouyer F., Rosbash M. Members of a family of Drosophila putative odorant-binding proteins are expressed in different subsets of olfactory hairs. Neuron. 1994 Jan;12(1):35–49. doi: 10.1016/0896-6273(94)90150-3. [DOI] [PubMed] [Google Scholar]
  34. Robertson H. M., Martos R., Sears C. R., Todres E. Z., Walden K. K., Nardi J. B. Diversity of odourant binding proteins revealed by an expressed sequence tag project on male Manduca sexta moth antennae. Insect Mol Biol. 1999 Nov;8(4):501–518. doi: 10.1046/j.1365-2583.1999.00146.x. [DOI] [PubMed] [Google Scholar]
  35. Sandler B. H., Nikonova L., Leal W. S., Clardy J. Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex. Chem Biol. 2000 Feb;7(2):143–151. doi: 10.1016/s1074-5521(00)00078-8. [DOI] [PubMed] [Google Scholar]
  36. Shin D. H., Lee J. Y., Hwang K. Y., Kim K. K., Suh S. W. High-resolution crystal structure of the non-specific lipid-transfer protein from maize seedlings. Structure. 1995 Feb 15;3(2):189–199. doi: 10.1016/s0969-2126(01)00149-6. [DOI] [PubMed] [Google Scholar]
  37. Vogt R. G., Riddiford L. M., Prestwich G. D. Kinetic properties of a sex pheromone-degrading enzyme: the sensillar esterase of Antheraea polyphemus. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8827–8831. doi: 10.1073/pnas.82.24.8827. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES