Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jan 1;369(Pt 1):23–30. doi: 10.1042/BJ20021081

Transport of bile acids in multidrug-resistance-protein 3-overexpressing cells co-transfected with the ileal Na+-dependent bile-acid transporter.

Noam Zelcer 1, Tohru Saeki 1, Ilse Bot 1, Annemieke Kuil 1, Piet Borst 1
PMCID: PMC1223054  PMID: 12220224

Abstract

Many of the transporters involved in the transport of bile acids in the enterohepatic circulation have been characterized. The basolateral bile-acid transporter of ileocytes and cholangiocytes remains an exception. It has been suggested that rat multidrug resistance protein 3 (Mrp3) fulfills this function. Here we analyse bile-salt transport by human MRP3. Membrane vesicles from insect ( Spodoptera frugiperda ) cells expressing MRP3 show time-dependent uptake of glycocholate and taurocholate. Furthermore, sulphated bile salts were high-affinity competitive inhibitors of etoposide glucuronide transport by MRP3 (IC50 approximately 10 microM). Taurochenodeoxycholate, taurocholate and glycocholate inhibited transport at higher concentrations (IC50 approximately 100, 250 and 500 microM respectively). We used mouse fibroblast-like cell lines derived from mice with disrupted Mdr1a, Mdr1b and Mrp1 genes to generate transfectants that express the murine apical Na+-dependent bile-salt transporter (Asbt) and MRP3. Uptake of glycocholate by these cells is Na+-dependent, with a K(m) and V(max) of 29+/-7 microM and 660 +/- 63 pmol/min per mg of protein respectively and is inhibited by several organic-aniontransport inhibitors. Expression of MRP3 in these cells limits the accumulation of glycocholate and increases the efflux from cells preloaded with taurocholate or glycocholate. In conclusion, we find that MRP3 transports both taurocholate and glycocholate, albeit with low affinity, in contrast with the high-affinity transport by rat Mrp3. Our results suggest that MRP3 is unlikely to be the principal basolateral bile-acid transporter of ileocytes and cholangiocytes, but that it may have a role in the removal of bile acids from the liver in cholestasis.

Full Text

The Full Text of this article is available as a PDF (200.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akita H., Suzuki H., Ito K., Kinoshita S., Sato N., Takikawa H., Sugiyama Y. Characterization of bile acid transport mediated by multidrug resistance associated protein 2 and bile salt export pump. Biochim Biophys Acta. 2001 Mar 9;1511(1):7–16. doi: 10.1016/s0005-2736(00)00355-2. [DOI] [PubMed] [Google Scholar]
  2. Benedetti A., Di Sario A., Marucci L., Svegliati-Baroni G., Schteingart C. D., Ton-Nu H. T., Hofmann A. F. Carrier-mediated transport of conjugated bile acids across the basolateral membrane of biliary epithelial cells. Am J Physiol. 1997 Jun;272(6 Pt 1):G1416–G1424. doi: 10.1152/ajpgi.1997.272.6.G1416. [DOI] [PubMed] [Google Scholar]
  3. Borst P., Evers R., Kool M., Wijnholds J. A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst. 2000 Aug 16;92(16):1295–1302. doi: 10.1093/jnci/92.16.1295. [DOI] [PubMed] [Google Scholar]
  4. Craddock A. L., Love M. W., Daniel R. W., Kirby L. C., Walters H. C., Wong M. H., Dawson P. A. Expression and transport properties of the human ileal and renal sodium-dependent bile acid transporter. Am J Physiol. 1998 Jan;274(1 Pt 1):G157–G169. doi: 10.1152/ajpgi.1998.274.1.G157. [DOI] [PubMed] [Google Scholar]
  5. Cui Y., König J., Keppler D. Vectorial transport by double-transfected cells expressing the human uptake transporter SLC21A8 and the apical export pump ABCC2. Mol Pharmacol. 2001 Nov;60(5):934–943. doi: 10.1124/mol.60.5.934. [DOI] [PubMed] [Google Scholar]
  6. Donner M. G., Keppler D. Up-regulation of basolateral multidrug resistance protein 3 (Mrp3) in cholestatic rat liver. Hepatology. 2001 Aug;34(2):351–359. doi: 10.1053/jhep.2001.26213. [DOI] [PubMed] [Google Scholar]
  7. Gerloff T., Stieger B., Hagenbuch B., Madon J., Landmann L., Roth J., Hofmann A. F., Meier P. J. The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J Biol Chem. 1998 Apr 17;273(16):10046–10050. doi: 10.1074/jbc.273.16.10046. [DOI] [PubMed] [Google Scholar]
  8. Gong Y. Z., Everett E. T., Schwartz D. A., Norris J. S., Wilson F. A. Molecular cloning, tissue distribution, and expression of a 14-kDa bile acid-binding protein from rat ileal cytosol. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4741–4745. doi: 10.1073/pnas.91.11.4741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hagenbuch B., Meier P. J. Sinusoidal (basolateral) bile salt uptake systems of hepatocytes. Semin Liver Dis. 1996 May;16(2):129–136. doi: 10.1055/s-2007-1007226. [DOI] [PubMed] [Google Scholar]
  10. Hagenbuch B., Stieger B., Foguet M., Lübbert H., Meier P. J. Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10629–10633. doi: 10.1073/pnas.88.23.10629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hirohashi T., Suzuki H., Ito K., Ogawa K., Kume K., Shimizu T., Sugiyama Y. Hepatic expression of multidrug resistance-associated protein-like proteins maintained in eisai hyperbilirubinemic rats. Mol Pharmacol. 1998 Jun;53(6):1068–1075. [PubMed] [Google Scholar]
  12. Hirohashi T., Suzuki H., Sugiyama Y. Characterization of the transport properties of cloned rat multidrug resistance-associated protein 3 (MRP3). J Biol Chem. 1999 May 21;274(21):15181–15185. doi: 10.1074/jbc.274.21.15181. [DOI] [PubMed] [Google Scholar]
  13. Hirohashi T., Suzuki H., Takikawa H., Sugiyama Y. ATP-dependent transport of bile salts by rat multidrug resistance-associated protein 3 (Mrp3). J Biol Chem. 2000 Jan 28;275(4):2905–2910. doi: 10.1074/jbc.275.4.2905. [DOI] [PubMed] [Google Scholar]
  14. Inokuchi A., Hinoshita E., Iwamoto Y., Kohno K., Kuwano M., Uchiumi T. Enhanced expression of the human multidrug resistance protein 3 by bile salt in human enterocytes. A transcriptional control of a plausible bile acid transporter. J Biol Chem. 2001 Oct 4;276(50):46822–46829. doi: 10.1074/jbc.M104612200. [DOI] [PubMed] [Google Scholar]
  15. Kiuchi Y., Suzuki H., Hirohashi T., Tyson C. A., Sugiyama Y. cDNA cloning and inducible expression of human multidrug resistance associated protein 3 (MRP3). FEBS Lett. 1998 Aug 14;433(1-2):149–152. doi: 10.1016/s0014-5793(98)00899-0. [DOI] [PubMed] [Google Scholar]
  16. Kool M., van der Linden M., de Haas M., Scheffer G. L., de Vree J. M., Smith A. J., Jansen G., Peters G. J., Ponne N., Scheper R. J. MRP3, an organic anion transporter able to transport anti-cancer drugs. Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6914–6919. doi: 10.1073/pnas.96.12.6914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kullak-Ublick G. A., Beuers U., Paumgartner G. Hepatobiliary transport. J Hepatol. 2000;32(1 Suppl):3–18. doi: 10.1016/s0168-8278(00)80411-0. [DOI] [PubMed] [Google Scholar]
  18. Kullak-Ublick G. A., Meier P. J. Mechanisms of cholestasis. Clin Liver Dis. 2000 May;4(2):357–385. doi: 10.1016/s1089-3261(05)70114-8. [DOI] [PubMed] [Google Scholar]
  19. Kullak-Ublick G. A., Stieger B., Hagenbuch B., Meier P. J. Hepatic transport of bile salts. Semin Liver Dis. 2000;20(3):273–292. doi: 10.1055/s-2000-9426. [DOI] [PubMed] [Google Scholar]
  20. König J., Rost D., Cui Y., Keppler D. Characterization of the human multidrug resistance protein isoform MRP3 localized to the basolateral hepatocyte membrane. Hepatology. 1999 Apr;29(4):1156–1163. doi: 10.1002/hep.510290404. [DOI] [PubMed] [Google Scholar]
  21. Lazaridis K. N., Pham L., Tietz P., Marinelli R. A., deGroen P. C., Levine S., Dawson P. A., LaRusso N. F. Rat cholangiocytes absorb bile acids at their apical domain via the ileal sodium-dependent bile acid transporter. J Clin Invest. 1997 Dec 1;100(11):2714–2721. doi: 10.1172/JCI119816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lazaridis K. N., Tietz P., Wu T., Kip S., Dawson P. A., LaRusso N. F. Alternative splicing of the rat sodium/bile acid transporter changes its cellular localization and transport properties. Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):11092–11097. doi: 10.1073/pnas.200325297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lee J. M., Trauner M., Soroka C. J., Stieger B., Meier P. J., Boyer J. L. Expression of the bile salt export pump is maintained after chronic cholestasis in the rat. Gastroenterology. 2000 Jan;118(1):163–172. doi: 10.1016/s0016-5085(00)70425-2. [DOI] [PubMed] [Google Scholar]
  24. Lee J., Boyer J. L. Molecular alterations in hepatocyte transport mechanisms in acquired cholestatic liver disorders. Semin Liver Dis. 2000;20(3):373–384. doi: 10.1055/s-2000-9390. [DOI] [PubMed] [Google Scholar]
  25. Li L., Meier P. J., Ballatori N. Oatp2 mediates bidirectional organic solute transport: a role for intracellular glutathione. Mol Pharmacol. 2000 Aug;58(2):335–340. doi: 10.1124/mol.58.2.335. [DOI] [PubMed] [Google Scholar]
  26. Morgenstern J. P., Land H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 1990 Jun 25;18(12):3587–3596. doi: 10.1093/nar/18.12.3587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ogawa K., Suzuki H., Hirohashi T., Ishikawa T., Meier P. J., Hirose K., Akizawa T., Yoshioka M., Sugiyama Y. Characterization of inducible nature of MRP3 in rat liver. Am J Physiol Gastrointest Liver Physiol. 2000 Mar;278(3):G438–G446. doi: 10.1152/ajpgi.2000.278.3.G438. [DOI] [PubMed] [Google Scholar]
  28. Paulusma C. C., Bosma P. J., Zaman G. J., Bakker C. T., Otter M., Scheffer G. L., Scheper R. J., Borst P., Oude Elferink R. P. Congenital jaundice in rats with a mutation in a multidrug resistance-associated protein gene. Science. 1996 Feb 23;271(5252):1126–1128. doi: 10.1126/science.271.5252.1126. [DOI] [PubMed] [Google Scholar]
  29. Qian Y. M., Song W. C., Cui H., Cole S. P., Deeley R. G. Glutathione stimulates sulfated estrogen transport by multidrug resistance protein 1. J Biol Chem. 2000 Dec 1;276(9):6404–6411. doi: 10.1074/jbc.M008251200. [DOI] [PubMed] [Google Scholar]
  30. Saeki T., Matoba K., Furukawa H., Kirifuji K., Kanamoto R., Iwami K. Characterization, cDNA cloning, and functional expression of mouse ileal sodium-dependent bile acid transporter. J Biochem. 1999 Apr;125(4):846–851. doi: 10.1093/oxfordjournals.jbchem.a022358. [DOI] [PubMed] [Google Scholar]
  31. Sakamoto H., Hara H., Hirano K., Adachi T. Enhancement of glucuronosyl etoposide transport by glutathione in multidrug resistance-associated protein-overexpressing cells. Cancer Lett. 1999 Jan 8;135(1):113–119. doi: 10.1016/s0304-3835(98)00285-7. [DOI] [PubMed] [Google Scholar]
  32. Scheffer George L., Kool Marcel, de Haas Marcel, de Vree J. Marleen L., Pijnenborg Adriana C. L. M., Bosman Diederik K., Elferink Ronald P. J. Oude, van der Valk Paul, Borst Piet, Scheper Rik J. Tissue distribution and induction of human multidrug resistant protein 3. Lab Invest. 2002 Feb;82(2):193–201. doi: 10.1038/labinvest.3780411. [DOI] [PubMed] [Google Scholar]
  33. Shneider B. L. Intestinal bile acid transport: biology, physiology, and pathophysiology. J Pediatr Gastroenterol Nutr. 2001 Apr;32(4):407–417. doi: 10.1097/00005176-200104000-00002. [DOI] [PubMed] [Google Scholar]
  34. Shneider B. L., Moyer M. S. Characterization of endogenous carrier-mediated taurocholate efflux from Xenopus laevis oocytes. J Biol Chem. 1993 Apr 5;268(10):6985–6988. [PubMed] [Google Scholar]
  35. Smit J. J., Schinkel A. H., Oude Elferink R. P., Groen A. K., Wagenaar E., van Deemter L., Mol C. A., Ottenhoff R., van der Lugt N. M., van Roon M. A. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell. 1993 Nov 5;75(3):451–462. doi: 10.1016/0092-8674(93)90380-9. [DOI] [PubMed] [Google Scholar]
  36. Soroka C. J., Lee J. M., Azzaroli F., Boyer J. L. Cellular localization and up-regulation of multidrug resistance-associated protein 3 in hepatocytes and cholangiocytes during obstructive cholestasis in rat liver. Hepatology. 2001 Apr;33(4):783–791. doi: 10.1053/jhep.2001.23501. [DOI] [PubMed] [Google Scholar]
  37. Strautnieks S. S., Bull L. N., Knisely A. S., Kocoshis S. A., Dahl N., Arnell H., Sokal E., Dahan K., Childs S., Ling V. A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat Genet. 1998 Nov;20(3):233–238. doi: 10.1038/3034. [DOI] [PubMed] [Google Scholar]
  38. Sun A. Q., Ananthanarayanan M., Soroka C. J., Thevananther S., Shneider B. L., Suchy F. J. Sorting of rat liver and ileal sodium-dependent bile acid transporters in polarized epithelial cells. Am J Physiol. 1998 Nov;275(5 Pt 1):G1045–G1055. doi: 10.1152/ajpgi.1998.275.5.G1045. [DOI] [PubMed] [Google Scholar]
  39. Suzuki H., Sugiyama Y. Transport of drugs across the hepatic sinusoidal membrane: sinusoidal drug influx and efflux in the liver. Semin Liver Dis. 2000;20(3):251–263. doi: 10.1055/s-2000-8408. [DOI] [PubMed] [Google Scholar]
  40. Trauner M., Meier P. J., Boyer J. L. Molecular pathogenesis of cholestasis. N Engl J Med. 1998 Oct 22;339(17):1217–1227. doi: 10.1056/NEJM199810223391707. [DOI] [PubMed] [Google Scholar]
  41. Wang R., Salem M., Yousef I. M., Tuchweber B., Lam P., Childs S. J., Helgason C. D., Ackerley C., Phillips M. J., Ling V. Targeted inactivation of sister of P-glycoprotein gene (spgp) in mice results in nonprogressive but persistent intrahepatic cholestasis. Proc Natl Acad Sci U S A. 2001 Feb 6;98(4):2011–2016. doi: 10.1073/pnas.031465498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Weinberg S. L., Burckhardt G., Wilson F. A. Taurocholate transport by rat intestinal basolateral membrane vesicles. Evidence for the presence of an anion exchange transport system. J Clin Invest. 1986 Jul;78(1):44–50. doi: 10.1172/JCI112571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wong M. H., Oelkers P., Craddock A. L., Dawson P. A. Expression cloning and characterization of the hamster ileal sodium-dependent bile acid transporter. J Biol Chem. 1994 Jan 14;269(2):1340–1347. [PubMed] [Google Scholar]
  44. Zelcer N., Saeki T., Reid G., Beijnen J. H., Borst P. Characterization of drug transport by the human multidrug resistance protein 3 (ABCC3). J Biol Chem. 2001 Dec 7;276(49):46400–46407. doi: 10.1074/jbc.M107041200. [DOI] [PubMed] [Google Scholar]
  45. Zeng H., Liu G., Rea P. A., Kruh G. D. Transport of amphipathic anions by human multidrug resistance protein 3. Cancer Res. 2000 Sep 1;60(17):4779–4784. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES