Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jan 1;369(Pt 1):129–139. doi: 10.1042/BJ20020449

A prothrombin activator from Bothrops erythromelas (jararaca-da-seca) snake venom: characterization and molecular cloning.

Márcia B Silva 1, Mirta Schattner 1, Celso R R Ramos 1, Inácio L M Junqueira-de-Azevedo 1, Míriam C Guarnieri 1, María A Lazzari 1, Claudio A M Sampaio 1, Roberto G Pozner 1, Janaina S Ventura 1, Paulo L Ho 1, Ana M Chudzinski-Tavassi 1
PMCID: PMC1223056  PMID: 12225292

Abstract

A novel prothrombin activator enzyme, which we have named 'berythractivase', was isolated from Bothrops erythromelas (jararaca-da-seca) snake venom. Berythractivase was purified by a single cation-exchange-chromatography step on a Resource S (Amersham Biosciences) column. The overall purification (31-fold) indicates that berythractivase comprises about 5% of the crude venom. It is a single-chain protein with a molecular mass of 78 kDa. SDS/PAGE of prothrombin after activation by berythractivase showed fragment patterns similar to those generated by group A prothrombin activators, which convert prothrombin into meizothrombin, independent of the prothrombinase complex. Chelating agents, such as EDTA and o -phenanthroline, rapidly inhibited the enzymic activity of berythractivase, like a typical metalloproteinase. Human fibrinogen A alpha-chain was slowly digested only after longer incubation with berythractivase, and no effect on the beta- or gamma-chains was observed. Berythractivase was also capable of triggering endothelial proinflammatory and procoagulant cell responses. von Willebrand factor was released, and the surface expression of both intracellular adhesion molecule-1 and E-selectin was up-regulated by berythractivase in cultured human umbilical-vein endothelial cells. The complete berythractivase cDNA was cloned from a B. erythromelas venom-gland cDNA library. The cDNA sequence possesses 2330 bp and encodes a preproprotein with significant sequence similarity to many other mature metalloproteinases reported from snake venoms. Berythractivase contains metalloproteinase, desintegrin-like and cysteine-rich domains. However, berythractivase did not elicit any haemorrhagic response. These results show that, although the primary structure of berythractivase is related to that of snake-venom haemorrhagic metalloproteinases and functionally similar to group A prothrombin activators, it is a prothrombin activator devoid of haemorrhagic activity. This is a feature not observed for most of the snake venom metalloproteinases, including the group A prothrombin activators.

Full Text

The Full Text of this article is available as a PDF (403.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bjarnason J. B., Fox J. W. Snake venom metalloendopeptidases: reprolysins. Methods Enzymol. 1995;248:345–368. doi: 10.1016/0076-6879(95)48023-4. [DOI] [PubMed] [Google Scholar]
  2. Blobel C. P. Metalloprotease-disintegrins: links to cell adhesion and cleavage of TNF alpha and Notch. Cell. 1997 Aug 22;90(4):589–592. doi: 10.1016/s0092-8674(00)80519-x. [DOI] [PubMed] [Google Scholar]
  3. Chester A., Crawford G. P. In vitro coagulant properties of venoms from Australian snakes. Toxicon. 1982;20(2):501–504. doi: 10.1016/0041-0101(82)90014-9. [DOI] [PubMed] [Google Scholar]
  4. DeClerck Y. A. Interactions between tumour cells and stromal cells and proteolytic modification of the extracellular matrix by metalloproteinases in cancer. Eur J Cancer. 2000 Jun;36(10):1258–1268. doi: 10.1016/s0959-8049(00)00094-0. [DOI] [PubMed] [Google Scholar]
  5. Estêvão-Costa M. I., Diniz C. R., Magalhães A., Markland F. S., Sanchez E. F. Action of metalloproteinases mutalysin I and II on several components of the hemostatic and fibrinolytic systems. Thromb Res. 2000 Aug 15;99(4):363–376. doi: 10.1016/s0049-3848(00)00259-0. [DOI] [PubMed] [Google Scholar]
  6. Farsky S. H., Gonçalves L. R., Gutiérrez J. M., Correa A. P., Rucavado A., Gasque P., Tambourgi D. V. Bothrops asper snake venom and its metalloproteinase BaP-1 activate the complement system. Role in leucocyte recruitment. Mediators Inflamm. 2000;9(5):213–221. doi: 10.1080/09629350020025728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fischer B. E., Schlokat U., Mitterer A., Grillberger L., Reiter M., Mundt W., Dorner F., Eibl J. Differentiation between proteolytic activation and autocatalytic conversion of human prothrombin. Activation of recombinant human prothrombin and recombinant D419N-prothrombin by snake venoms from Echis carinatus and Oxyuranus scutellatus. Protein Eng. 1996 Oct;9(10):921–926. doi: 10.1093/protein/9.10.921. [DOI] [PubMed] [Google Scholar]
  8. Furtado M. F., Maruyama M., Kamiguti A. S., Antonio L. C. Comparative study of nine Bothrops snake venoms from adult female snakes and their offspring. Toxicon. 1991;29(2):219–226. doi: 10.1016/0041-0101(91)90106-2. [DOI] [PubMed] [Google Scholar]
  9. Govers-Riemslag J. W., Knapen M. J., Tans G., Zwaal R. F., Rosing J. Structural and functional characterization of a prothrombin activator from the venom of Bothrops neuwiedi. Biochim Biophys Acta. 1987 Dec 18;916(3):388–401. doi: 10.1016/0167-4838(87)90185-3. [DOI] [PubMed] [Google Scholar]
  10. Grams F., Huber R., Kress L. F., Moroder L., Bode W. Activation of snake venom metalloproteinases by a cysteine switch-like mechanism. FEBS Lett. 1993 Nov 29;335(1):76–80. doi: 10.1016/0014-5793(93)80443-x. [DOI] [PubMed] [Google Scholar]
  11. Gutiérrez J. M., Rucavado A. Snake venom metalloproteinases: their role in the pathogenesis of local tissue damage. Biochimie. 2000 Sep-Oct;82(9-10):841–850. doi: 10.1016/s0300-9084(00)01163-9. [DOI] [PubMed] [Google Scholar]
  12. Heldebrant C. M., Noyes C., Kingdon H. S., Mann K. G. The activation of prothrombin. 3. The partial amino acid sequences at the amino terminal of prothrombin and the intermediates of activation. Biochem Biophys Res Commun. 1973 Sep 5;54(1):155–160. doi: 10.1016/0006-291x(73)90902-9. [DOI] [PubMed] [Google Scholar]
  13. Hite L. A., Jia L. G., Bjarnason J. B., Fox J. W. cDNA sequences for four snake venom metalloproteinases: structure, classification, and their relationship to mammalian reproductive proteins. Arch Biochem Biophys. 1994 Jan;308(1):182–191. doi: 10.1006/abbi.1994.1026. [DOI] [PubMed] [Google Scholar]
  14. Hite L. A., Shannon J. D., Bjarnason J. B., Fox J. W. Sequence of a cDNA clone encoding the zinc metalloproteinase hemorrhagic toxin e from Crotalus atrox: evidence for signal, zymogen, and disintegrin-like structures. Biochemistry. 1992 Jul 14;31(27):6203–6211. doi: 10.1021/bi00142a005. [DOI] [PubMed] [Google Scholar]
  15. Hofmann H., Bon C. Blood coagulation induced by the venom of Bothrops atrox. 1. Identification, purification, and properties of a prothrombin activator. Biochemistry. 1987 Feb 10;26(3):772–780. doi: 10.1021/bi00377a018. [DOI] [PubMed] [Google Scholar]
  16. Ito M., Hamako J., Sakurai Y., Matsumoto M., Fujimura Y., Suzuki M., Hashimoto K., Titani K., Matsui T. Complete amino acid sequence of kaouthiagin, a novel cobra venom metalloproteinase with two disintegrin-like sequences. Biochemistry. 2001 Apr 10;40(14):4503–4511. doi: 10.1021/bi0022700. [DOI] [PubMed] [Google Scholar]
  17. Jackson C. M., Nemerson Y. Blood coagulation. Annu Rev Biochem. 1980;49:765–811. doi: 10.1146/annurev.bi.49.070180.004001. [DOI] [PubMed] [Google Scholar]
  18. Jaffe E. A., Nachman R. L., Becker C. G., Minick C. R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973 Nov;52(11):2745–2756. doi: 10.1172/JCI107470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jespersen J., Astrup T. A study of the fibrin plate assay of fibrinolytic agents. Optimal conditions, reproducibility and precision. Haemostasis. 1983;13(5):301–315. doi: 10.1159/000214769. [DOI] [PubMed] [Google Scholar]
  20. Jobin F., Esnouf M. P. Coagulant activity of tiger snake (Notechis scutatus scutatus) venom. Nature. 1966 Aug 20;211(5051):873–875. doi: 10.1038/211873b0. [DOI] [PubMed] [Google Scholar]
  21. Joseph J. S., Chung M. C., Jeyaseelan K., Kini R. M. Amino acid sequence of trocarin, a prothrombin activator from Tropidechis carinatus venom: its structural similarity to coagulation factor Xa. Blood. 1999 Jul 15;94(2):621–631. [PubMed] [Google Scholar]
  22. Junqueira de Azevedo I. L., Farsky S. H., Oliveira M. L., Ho P. L. Molecular cloning and expression of a functional snake venom vascular endothelium growth factor (VEGF) from the Bothrops insularis pit viper. A new member of the VEGF family of proteins. J Biol Chem. 2001 Aug 21;276(43):39836–39842. doi: 10.1074/jbc.M106531200. [DOI] [PubMed] [Google Scholar]
  23. KONDO H., KONDO S., IKEZAWA H., MURATA R. Studies on the quantitative method for determination of hemorrhagic activity of Habu snake venom. Jpn J Med Sci Biol. 1960;13:43–52. doi: 10.7883/yoken1952.13.43. [DOI] [PubMed] [Google Scholar]
  24. Kamiguti A. S., Hay C. R., Zuzel M. Inhibition of collagen-induced platelet aggregation as the result of cleavage of alpha 2 beta 1-integrin by the snake venom metalloproteinase jararhagin. Biochem J. 1996 Dec 1;320(Pt 2):635–641. doi: 10.1042/bj3200635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kini R. M., Evans H. J. Structural domains in venom proteins: evidence that metalloproteinases and nonenzymatic platelet aggregation inhibitors (disintegrins) from snake venoms are derived by proteolysis from a common precursor. Toxicon. 1992 Mar;30(3):265–293. doi: 10.1016/0041-0101(92)90869-7. [DOI] [PubMed] [Google Scholar]
  26. Kini R. M., Rao V. S., Joseph J. S. Procoagulant proteins from snake venoms. Haemostasis. 2001 May-Dec;31(3-6):218–224. doi: 10.1159/000048066. [DOI] [PubMed] [Google Scholar]
  27. Kornalik F., Blombäck B. Prothrombin activation induced by Ecarin - a prothrombin converting enzyme from Echis carinatus venom. Thromb Res. 1975 Jan;6(1):57–63. doi: 10.1016/0049-3848(75)90150-4. [DOI] [PubMed] [Google Scholar]
  28. Kornalik F., Blombäck B. Prothrombin activation induced by Ecarin - a prothrombin converting enzyme from Echis carinatus venom. Thromb Res. 1975 Jan;6(1):57–63. doi: 10.1016/0049-3848(75)90150-4. [DOI] [PubMed] [Google Scholar]
  29. Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986 Jan 31;44(2):283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
  30. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  31. Lomonte B., Gutiérrez J. M., Borkow G., Ovadia M., Tarkowski A., Hanson L. A. Activity of hemorrhagic metalloproteinase BaH-1 and myotoxin II from Bothrops asper snake venom on capillary endothelial cells in vitro. Toxicon. 1994 Apr;32(4):505–510. doi: 10.1016/0041-0101(94)90302-6. [DOI] [PubMed] [Google Scholar]
  32. Mann K. G. The coagulation explosion. Ann N Y Acad Sci. 1994 Apr 18;714:265–269. doi: 10.1111/j.1749-6632.1994.tb12053.x. [DOI] [PubMed] [Google Scholar]
  33. Markland F. S., Jr Inventory of alpha- and beta-fibrinogenases from snake venoms. For the Subcommittee on Nomenclature of Exogenous Hemostatic Factors of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost. 1991 Apr 8;65(4):438–443. [PubMed] [Google Scholar]
  34. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  35. Marshall L. R., Herrmann R. P. Coagulant and anticoagulant actions of Australian snake venoms. Thromb Haemost. 1983 Oct 31;50(3):707–711. [PubMed] [Google Scholar]
  36. Maruyama M., Kamiguti A. S., Cardoso J. L., Sano-Martins I. S., Chudzinski A. M., Santoro M. L., Morena P., Tomy S. C., Antonio L. C., Mihara H. Studies on blood coagulation and fibrinolysis in patients bitten by Bothrops jararaca (jararaca). Thromb Haemost. 1990 Jun 28;63(3):449–453. [PubMed] [Google Scholar]
  37. Maruyama M., Kamiguti A. S., Tomy S. C., Antonio L. C., Sugiki M., Mihara H. Prothrombin and factor X activating properties of Bothrops erythromelas venom. Ann Trop Med Parasitol. 1992 Oct;86(5):549–556. doi: 10.1080/00034983.1992.11812706. [DOI] [PubMed] [Google Scholar]
  38. Masci P. P., Whitaker A. N., de Jersey J. Purification and characterization of a prothrombin activator from the venom of the Australian brown snake, Pseudonaja textilis textilis. Biochem Int. 1988 Nov;17(5):825–835. [PubMed] [Google Scholar]
  39. Masuda S., Ohta T., Kaji K., Fox J. W., Hayashi H., Araki S. cDNA cloning and characterization of vascular apoptosis-inducing protein 1. Biochem Biophys Res Commun. 2000 Nov 11;278(1):197–204. doi: 10.1006/bbrc.2000.3770. [DOI] [PubMed] [Google Scholar]
  40. Moura-da-Silva A. M., Línica A., Della-Casa M. S., Kamiguti A. S., Ho P. L., Crampton J. M., Theakston R. D. Jararhagin ECD-containing disintegrin domain: expression in escherichia coli and inhibition of the platelet-collagen interaction. Arch Biochem Biophys. 1999 Sep 15;369(2):295–301. doi: 10.1006/abbi.1999.1372. [DOI] [PubMed] [Google Scholar]
  41. Nahas L., Kamiguti A. S., Barros M. A. Thrombin-like and factor X-activator components of Bothrops snake venoms. Thromb Haemost. 1979 Apr 23;41(2):314–328. [PubMed] [Google Scholar]
  42. Nikai T., Taniguchi K., Komori Y., Masuda K., Fox J. W., Sugihara H. Primary structure and functional characterization of bilitoxin-1, a novel dimeric P-II snake venom metalloproteinase from Agkistrodon bilineatus venom. Arch Biochem Biophys. 2000 Jun 1;378(1):6–15. doi: 10.1006/abbi.2000.1795. [DOI] [PubMed] [Google Scholar]
  43. Nishida S., Fujita T., Kohno N., Atoda H., Morita T., Takeya H., Kido I., Paine M. J., Kawabata S., Iwanaga S. cDNA cloning and deduced amino acid sequence of prothrombin activator (ecarin) from Kenyan Echis carinatus venom. Biochemistry. 1995 Feb 7;34(5):1771–1778. doi: 10.1021/bi00005a034. [DOI] [PubMed] [Google Scholar]
  44. Ouyang C., Teng C. M., Huang T. F. Characterization of snake venom components acting on blood coagulation and platelet function. Toxicon. 1992 Sep;30(9):945–966. doi: 10.1016/0041-0101(92)90040-c. [DOI] [PubMed] [Google Scholar]
  45. Paine M. J., Desmond H. P., Theakston R. D., Crampton J. M. Purification, cloning, and molecular characterization of a high molecular weight hemorrhagic metalloprotease, jararhagin, from Bothrops jararaca venom. Insights into the disintegrin gene family. J Biol Chem. 1992 Nov 15;267(32):22869–22876. [PubMed] [Google Scholar]
  46. Rosing J., Tans G. Inventory of exogenous prothrombin activators. For the Subcommittee on Nomenclature of Exogenous Hemostatic Factors of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost. 1991 May 6;65(5):627–630. [PubMed] [Google Scholar]
  47. Rosing J., Tans G. Meizothrombin, a major product of factor Xa-catalyzed prothrombin activation. Thromb Haemost. 1988 Dec 22;60(3):355–360. [PubMed] [Google Scholar]
  48. Rosing J., Tans G. Structural and functional properties of snake venom prothrombin activators. Toxicon. 1992 Dec;30(12):1515–1527. doi: 10.1016/0041-0101(92)90023-x. [DOI] [PubMed] [Google Scholar]
  49. Sadler J. E. Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem. 1998;67:395–424. doi: 10.1146/annurev.biochem.67.1.395. [DOI] [PubMed] [Google Scholar]
  50. Savage B., Almus-Jacobs F., Ruggeri Z. M. Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell. 1998 Sep 4;94(5):657–666. doi: 10.1016/s0092-8674(00)81607-4. [DOI] [PubMed] [Google Scholar]
  51. Selistre de Araujo H. S., de Souza D. H., Ownby C. L. Analysis of a cDNA sequence encoding a novel member of the snake venom metalloproteinase, disintegrin-like, cysteine-rich (MDC) protein family from Agkistrodon contortrix laticinctus. Biochim Biophys Acta. 1997 Oct 17;1342(2):109–115. doi: 10.1016/s0167-4838(97)00111-8. [DOI] [PubMed] [Google Scholar]
  52. Speijer H., Govers-Riemslag J. W., Zwaal R. F., Rosing J. Prothrombin activation by an activator from the venom of Oxyuranus scutellatus (Taipan snake). J Biol Chem. 1986 Oct 5;261(28):13258–13267. [PubMed] [Google Scholar]
  53. Sporn L. A., Chavin S. I., Marder V. J., Wagner D. D. Biosynthesis of von Willebrand protein by human megakaryocytes. J Clin Invest. 1985 Sep;76(3):1102–1106. doi: 10.1172/JCI112064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Tans G., Govers-Riemslag J. W., van Rijn J. L., Rosing J. Purification and properties of a prothrombin activator from the venom of Notechis scutatus scutatus. J Biol Chem. 1985 Aug 5;260(16):9366–9372. [PubMed] [Google Scholar]
  55. Usami Y., Fujimura Y., Miura S., Shima H., Yoshida E., Yoshioka A., Hirano K., Suzuki M., Titani K. A 28 kDa-protein with disintegrin-like structure (jararhagin-C) purified from Bothrops jararaca venom inhibits collagen- and ADP-induced platelet aggregation. Biochem Biophys Res Commun. 1994 May 30;201(1):331–339. doi: 10.1006/bbrc.1994.1706. [DOI] [PubMed] [Google Scholar]
  56. Vallee B. L., Auld D. S. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry. 1990 Jun 19;29(24):5647–5659. doi: 10.1021/bi00476a001. [DOI] [PubMed] [Google Scholar]
  57. Van Wart H. E., Birkedal-Hansen H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5578–5582. doi: 10.1073/pnas.87.14.5578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Wagner D. D., Marder V. J. Biosynthesis of von Willebrand protein by human endothelial cells: processing steps and their intracellular localization. J Cell Biol. 1984 Dec;99(6):2123–2130. doi: 10.1083/jcb.99.6.2123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Walker F. J., Owen W. G., Esmon C. T. Characterization of the prothrombin activator from the venom of Oxyuranus scutellatus scutellatus (taipan venom). Biochemistry. 1980 Mar 4;19(5):1020–1023. doi: 10.1021/bi00546a029. [DOI] [PubMed] [Google Scholar]
  60. Wise R. J., Dorner A. J., Krane M., Pittman D. D., Kaufman R. J. The role of von Willebrand factor multimers and propeptide cleavage in binding and stabilization of factor VIII. J Biol Chem. 1991 Nov 15;266(32):21948–21955. [PubMed] [Google Scholar]
  61. Yamada D., Morita T. Purification and characterization of a Ca2+ -dependent prothrombin activator, multactivase, from the venom of Echis multisquamatus. J Biochem. 1997 Nov;122(5):991–997. doi: 10.1093/oxfordjournals.jbchem.a021862. [DOI] [PubMed] [Google Scholar]
  62. Yamada D., Sekiya F., Morita T. Isolation and characterization of carinactivase, a novel prothrombin activator in Echis carinatus venom with a unique catalytic mechanism. J Biol Chem. 1996 Mar 1;271(9):5200–5207. doi: 10.1074/jbc.271.9.5200. [DOI] [PubMed] [Google Scholar]
  63. Zhou Q., Dangelmaier C., Smith J. B. The hemorrhagin catrocollastatin inhibits collagen-induced platelet aggregation by binding to collagen via its disintegrin-like domain. Biochem Biophys Res Commun. 1996 Feb 27;219(3):720–726. doi: 10.1006/bbrc.1996.0301. [DOI] [PubMed] [Google Scholar]
  64. Zhou Q., Smith J. B., Grossman M. H. Molecular cloning and expression of catrocollastatin, a snake-venom protein from Crotalus atrox (western diamondback rattlesnake) which inhibits platelet adhesion to collagen. Biochem J. 1995 Apr 15;307(Pt 2):411–417. doi: 10.1042/bj3070411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. von Heijne G. The signal peptide. J Membr Biol. 1990 May;115(3):195–201. doi: 10.1007/BF01868635. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES