Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2025 Jun 6;81(Pt 7):569–572. doi: 10.1107/S2056989025004980

Synthesis, crystal structure and Hirshfeld surface analysis of 5-methyl-2-[(1,3-thia­zol-2-yl)sulfan­yl]-1,3,4-thia­diazole

Ekaterina Kinshakova a, Batirbay Torambetov a,b,*, Manoj K Bharty c, Aziz Atashov d, Abdusamat Rasulov e, Shakhnoza Kadirova a, Rajesh G Gonnade f,b
Editor: D Choprag
PMCID: PMC12230607  PMID: 40630665

The title compound contains two biologically active heterocyclic rings, 1,3,4-thia­diazole and 1,3-thia­zole, connected via a sulfur atom. The packing is consolidated by non-classical inter­molecular C—H⋯N hydrogen bonds and ππ stacking inter­actions.

Keywords: 1,3,4-thia­diazole; 1,3-thia­zole; C—H⋯N inter­action; crystal structure; Hirshfeld surface analysis

Abstract

The title compound, C6H5N3S3, consists of two biologically relevant heterocyclic units, suggesting potential biological activity and possible use as a ligand in metal complexation. The compound crystallizes in the monoclinic space group P21/c and features non-classical inter­molecular C—H⋯N hydrogen bonds, along with π–π stacking inter­actions that contribute to the crystal cohesion. Hirshfeld surface analysis highlights significant inter­molecular inter­actions including, among others, N⋯H/H⋯N, S⋯H/H⋯S, and S⋯C/C⋯S contacts.

1. Chemical context

Derivatives combining 1,3,4-thia­diazole and 1,3-thia­zole moieties offer significant potential in medicinal chemistry due to their enhanced biological activity, pharmacokinetic profiles and structural versatility. This class of compounds is being actively explored in various therapeutic areas, including their use as anti­microbial (Booq et al., 2021; Hussain et al., 2022), anti­cancer (Shaikh et al., 2024; Altıntop et al., 2017; Dawood et al., 2013), anti-inflammatory (Arshad et al., 2022) and neuroprotective agents. With ongoing research into their SAR, bioavailability, and environmental impact, these derivatives are promising candidates for the next generation of drug development.

The structural fusion of 1,3,4-thia­diazole and 1,3-thia­zole is expected to have synergistic biological effects due to their different modes of action. Thia­diazo­les are often involved in enzyme inhibition and inter­action with metal ions, while thia­zoles enhance inter­actions with biological targets such as nucleic acids or proteins.

Herein, we report the synthesis and crystal structure of a new heterocyclic compound with combination of 1,3,4-thia­diazole and 1,3-thia­zole fragments. This 2-thia­zole-substituted derivative can act as a chelating ligand.1.

2. Structural commentary

The title compound (Fig. 1) crystallizes in the monoclinic system, space group P21/c. The mol­ecular structure of the compound is shown in Fig. 1. The geometric parameters of the thia­diazole and thia­zole rings are close to standard values and the values reported for related structures. (Renier et al., 2023; Luqman et al., 2016; Burnett et al., 2015; Dani et al., 2014; Weidner et al., 2008; Jumal et al., 2006; Kennedy et al., 2004; Hipler et al., 2003). The N—N and endocyclic C—S bonds are shorter than classical single bonds (1.4 and 1.81 Å), indicating partial double-bond character. At the same time, the C=N bonds are somewhat longer (∼0.02 Å) than the corresponding double bond, as a result of conjugation within the ring systems. These facts confirm the aromaticity of both rings. The exocyclic C—S bond is shortened since it includes carbon atoms with sp2 hybridization. Deviation of the bond angles from 120° in the 1,3,4-thia­diazole and 1,3-thia­zole rings is a common feature in five-membered rings (Bharty et al., 2012). The C—S—C bond angles in the 1,3,4-thia­diazole and 1,3-thia­zole rings of the title compound are 86.62 (8) and 89.25 (9)°, respectively, and the C1—S2—C3 bond angle outside the ring is 103.82 (8)°. The thia­diazole and thia­zole rings do not lie in the same plane, subtending a dihedral angle of 32.61 (10)°. No intra­molecular hydrogen bonds are observed.

Figure 1.

Figure 1

A view of the mol­ecular structure of 5-methyl-2-[(1,3-thia­zol-2-yl)sulfan­yl]-1,3,4-thia­diazole, showing the atom labeling and bond lengths. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features and energy framework calculations

The crystal packing is consolidated by C5—H5⋯N3ii hydrogen bonds [symmetry code: (ii) x + 1, y, z + 1], forming a six-membered Inline graphic (6) ring motif (Grabowski, 2020; Etter et al., 1990). Along the a-axis direction, cohesion of the crystal packing is achieved by C4—H4⋯N2i hydrogen bonds [symmetry code: (i) x + 1, y, z] between the methine group of the 1,3-thia­zole ring and the nitro­gen atom of the 1,3,4-thia­diazole ring of a nearby mol­ecule. The geometrical parameters of inter­molecular hydrogen bonds are shown in Table 1 and Fig. 2a.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N2i 0.93 2.55 3.472 (2) 169
C5—H5⋯N3ii 0.93 2.63 3.392 (3) 139

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

(a) Overview of inter­molecular C4—H4⋯N2 and C5—H5⋯N3 hydrogen bonds (shown in blue), (b) a view of the ππ stacking inter­actions (hydrogen bonds are shown in blue and ππ stacking inter­actions are shown in green). and (c) Highlight of S2⋯C5 chalcogen inter­actions (dashed lines) along the b-axis direction, with relevant atoms labeled.

In the supra­molecular structure of the compound, weak ππ-stacking inter­actions are found (Fig. 2b) between thia­diazole rings (symmetry operation −x, 1 − y, 1 − z) with an intra­centroid distance of 3.889 (9) Å and between thia­zole rings (symmetry operation −x, −y, 1 − z) with a centroid-to-centroid distance of 3.809 (9) Å. Similarly, the structure also exhibits inter­molecular chalcogen bond between C5 of the thia­zole ring and the bridging S2 atom [C5⋯S2(1 − x, −Inline graphic + y, Inline graphic − z) = 3.491 (2) Å] (Fig. 2c).

The inter­action energies of the hydrogen-bond system were calculated within the mol­ecules using the B3LYP method (B3LYP/6-31G (d, p) in CrystalExplorer 21.5 (Spackman et al., 2021). The total energy (Etot) is the sum of Coulombic (Eele), polar (Epol), dispersion (Edis) and repulsive (Erep) contributions. The four energy components were scaled in the total energy: Etot = 1.057Eele + 0.74Epol + 0.871Edis + 0.618Erep. The inter­action energies were investigated for a 3.8 Å cluster around the reference mol­ecule. The results give a total inter­action energy of −141 kJ mol−1 involving electrostatic (−74.3 kJ mol−1), polarization (−12.2 kJ mol−1), dispersion (−146.9 kJ mol−1) and repulsion (125 kJ mol−1) components.

4. Hirshfeld surface analysis

To further investigate the inter­mol­ecular inter­actions present in the title compound, a Hirshfeld surface analysis was performed, and the two-dimensional (2D) fingerprint plots were generated with CrystalExplorer17 (Spackman et al., 2021). Fig. 3 shows the three-dimensional (3D) Hirshfeld surface of the complex plotted over dnorm (normalized contact distance). The hydrogen-bond inter­actions given in Table 1 play a key role in the mol­ecular packing of the complex.

Figure 3.

Figure 3

View of the three-dimensional Hirshfeld surface of the mol­ecule plotted over dnorm.

The overall 2D fingerprint plot and those divided into inter­atomic inter­actions are shown in Fig. 4. The Hirshfeld surface analysis shows that 24.3% of the inter­molecular inter­actions are from N⋯H/H⋯N contacts, 21.1% from S⋯H/H⋯S contacts, 17.7% from H⋯H contacts and 9.7% are from S⋯C/C⋯S contacts, while other contributions are from C⋯H/H⋯C, S⋯C/C⋯S and S⋯N/N⋯S contacts (Fig. 4).

Figure 4.

Figure 4

The full two-dimensional fingerprint plot for the title compound, showing all inter­actions, and those delineated into separate inter­actions with the percentage contributions of various inter­atomic contacts occurring in the crystal.

5. Database survey

A survey of the Cambridge Structural Database performed using ConQuest software (CSD, Version 5.46, last updated November 2024; Groom et al., 2016) revealed that 122 crystal structures have been reported for the 2-methyl-1,3,4-thia­diazole-5-thiol fragment; among them, 73 structures are related to organometallic compounds. There are mostly organic thiol-substituted compounds reported, because of the good reactivity of the thiol group. In addition, there are three organic structures based on the 2-methyl-1,3,4-thia­diazole-5-thiol fragment (CILHAI, Dani et al., 2013; GEXWOY, Zhao et al., 2010; XICMOO, Cabral et al., 2018), which can bind in a bidentate manner with metal atoms to form six-membered rings. Similar to C6H5N3S3, chalcogen-bonding inter­actions were observed in both structures. In CILHAI, S—N chalcogen inter­actions occur where both nitro­gen atoms of the thia­diazole ring inter­act with the bridging sulfur atom and the sulfur atom of an adjacent thia­diazole ring. In XICMOO, a chalcogen inter­action is present between a sulfur atom and a carbon atom of a neighboring benzene ring.

6. Synthesis and crystallization

A solution of 5-methyl-1,3,4-thia­diazole-2-thiol (0.01 mol) and 2-bromo­thia­zole (0.01 mol) in DMF (10 ml) in presence of cesium carbonate was stirred for 5 h at 413 K. DMF was distilled off with a rotary evaporator. The resulting brown concentrate was dissolved in DCM/MeOH and separated by flash column chromatography. The synthesized amorphous product 2-methyl-5-(1,3-thia­zol-2-ylsulfan­yl)-1,3,4-thia­diazole was light yellow in color (m.p. 327 K). Further recrystallization gave crystals suitable for X-ray diffraction (yield: 60%).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Table 2. Experimental details.

Crystal data
Chemical formula C6H5N3S3
M r 215.31
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 10.6463 (2), 7.7151 (2), 11.1774 (3)
β (°) 103.272 (1)
V3) 893.56 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.77
Crystal size (mm) 0.13 × 0.1 × 0.06
 
Data collection
Diffractometer Bruker D8 VENTURE Kappa Duo PHOTON II CPAD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
No. of measured, independent and observed [I > 2σ(I)] reflections 18027, 2296, 1988
R int 0.052
(sin θ/λ)max−1) 0.677
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.088, 1.05
No. of reflections 2296
No. of parameters 110
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.50, −0.48

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2016/6 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989025004980/dx2067sup1.cif

e-81-00569-sup1.cif (552.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025004980/dx2067Isup3.hkl

e-81-00569-Isup3.hkl (184.1KB, hkl)

CCDC reference: 2455808

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

BT would like to acknowledge a CSIR–TWAS fellowship and also the FAIRE programme provided by the Cambridge Crystallographic Data Centre (CCDC) for the use of the Cambridge Structural Database (CSD) and associated software.

supplementary crystallographic information

5-Methyl-2-[(1,3-thiazol-2-yl)sulfanyl]-1,3,4-thiadiazole. Crystal data

C6H5N3S3 F(000) = 440
Mr = 215.31 Dx = 1.600 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 10.6463 (2) Å Cell parameters from 8027 reflections
b = 7.7151 (2) Å θ = 3.5–28.7°
c = 11.1774 (3) Å µ = 0.77 mm1
β = 103.272 (1)° T = 296 K
V = 893.56 (4) Å3 Block, colourless
Z = 4 0.13 × 0.1 × 0.06 mm

5-Methyl-2-[(1,3-thiazol-2-yl)sulfanyl]-1,3,4-thiadiazole. Data collection

Bruker D8 VENTURE Kappa Duo PHOTON II CPAD diffractometer 1988 reflections with I > 2σ(I)
φ and ω scans Rint = 0.052
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 28.7°, θmin = 3.6°
h = −13→14
18027 measured reflections k = −10→10
2296 independent reflections l = −15→15

5-Methyl-2-[(1,3-thiazol-2-yl)sulfanyl]-1,3,4-thiadiazole. Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0307P)2 + 0.4384P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
2296 reflections Δρmax = 0.50 e Å3
110 parameters Δρmin = −0.48 e Å3
0 restraints

5-Methyl-2-[(1,3-thiazol-2-yl)sulfanyl]-1,3,4-thiadiazole. Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

5-Methyl-2-[(1,3-thiazol-2-yl)sulfanyl]-1,3,4-thiadiazole. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.18439 (4) 0.24766 (7) 0.46938 (4) 0.04704 (14)
S2 0.34737 (4) 0.41561 (7) 0.71120 (4) 0.04642 (14)
S3 0.61254 (5) 0.45960 (7) 0.67293 (6) 0.05644 (16)
N1 0.10297 (15) 0.3506 (3) 0.65446 (15) 0.0558 (4)
N2 −0.00530 (15) 0.2958 (3) 0.56825 (16) 0.0591 (5)
N3 0.46784 (15) 0.2117 (2) 0.57237 (16) 0.0497 (4)
C1 0.20708 (15) 0.3340 (2) 0.61488 (15) 0.0384 (3)
C2 0.02170 (17) 0.2417 (3) 0.46812 (17) 0.0449 (4)
C3 0.47049 (15) 0.3452 (2) 0.64267 (14) 0.0358 (3)
C4 0.67326 (17) 0.3165 (3) 0.58452 (17) 0.0460 (4)
H4 0.756109 0.320593 0.570753 0.055*
C5 0.58447 (17) 0.1979 (3) 0.53809 (18) 0.0479 (4)
H5 0.599905 0.110958 0.485673 0.058*
C6 −0.07813 (19) 0.1783 (4) 0.3609 (2) 0.0606 (6)
H6A −0.089445 0.261709 0.295572 0.091*
H6B −0.158370 0.162416 0.384862 0.091*
H6C −0.050886 0.069815 0.333151 0.091*

5-Methyl-2-[(1,3-thiazol-2-yl)sulfanyl]-1,3,4-thiadiazole. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0320 (2) 0.0677 (3) 0.0452 (2) −0.00771 (18) 0.01673 (17) −0.0140 (2)
S2 0.0357 (2) 0.0601 (3) 0.0451 (2) −0.00303 (18) 0.01261 (17) −0.0143 (2)
S3 0.0371 (2) 0.0589 (3) 0.0750 (4) −0.0130 (2) 0.0165 (2) −0.0186 (3)
N1 0.0346 (7) 0.0911 (13) 0.0452 (8) −0.0027 (8) 0.0164 (6) −0.0116 (9)
N2 0.0312 (7) 0.0991 (14) 0.0502 (9) −0.0052 (8) 0.0160 (7) −0.0104 (9)
N3 0.0372 (7) 0.0557 (9) 0.0591 (9) −0.0067 (7) 0.0175 (7) −0.0144 (8)
C1 0.0336 (7) 0.0455 (9) 0.0382 (8) 0.0005 (6) 0.0128 (6) 0.0004 (7)
C2 0.0313 (8) 0.0600 (11) 0.0456 (9) −0.0036 (7) 0.0131 (7) −0.0005 (8)
C3 0.0292 (7) 0.0421 (8) 0.0354 (7) 0.0000 (6) 0.0058 (6) 0.0023 (6)
C4 0.0319 (8) 0.0571 (11) 0.0507 (10) 0.0024 (7) 0.0131 (7) 0.0058 (8)
C5 0.0387 (9) 0.0568 (11) 0.0512 (10) 0.0035 (8) 0.0163 (8) −0.0054 (8)
C6 0.0377 (9) 0.0926 (17) 0.0509 (11) −0.0108 (10) 0.0087 (8) −0.0101 (11)

5-Methyl-2-[(1,3-thiazol-2-yl)sulfanyl]-1,3,4-thiadiazole. Geometric parameters (Å, º)

S1—C1 1.7222 (17) N3—C3 1.292 (2)
S1—C2 1.7295 (17) N3—C5 1.385 (2)
S2—C1 1.7460 (17) C2—C6 1.490 (3)
S2—C3 1.7496 (16) C4—H4 0.9300
S3—C3 1.7162 (16) C4—C5 1.332 (3)
S3—C4 1.705 (2) C5—H5 0.9300
N1—N2 1.388 (2) C6—H6A 0.9600
N1—C1 1.291 (2) C6—H6B 0.9600
N2—C2 1.287 (2) C6—H6C 0.9600
C1—S1—C2 86.62 (8) N3—C3—S3 115.16 (12)
C1—S2—C3 103.82 (8) S3—C4—H4 125.0
C4—S3—C3 89.25 (9) C5—C4—S3 109.93 (13)
C1—N1—N2 111.92 (15) C5—C4—H4 125.0
C2—N2—N1 112.76 (15) N3—C5—H5 121.9
C3—N3—C5 109.47 (15) C4—C5—N3 116.16 (17)
S1—C1—S2 129.53 (9) C4—C5—H5 121.9
N1—C1—S1 114.64 (13) C2—C6—H6A 109.5
N1—C1—S2 115.66 (14) C2—C6—H6B 109.5
N2—C2—S1 114.04 (14) C2—C6—H6C 109.5
N2—C2—C6 123.05 (17) H6A—C6—H6B 109.5
C6—C2—S1 122.91 (14) H6A—C6—H6C 109.5
S3—C3—S2 117.96 (10) H6B—C6—H6C 109.5
N3—C3—S2 126.86 (13)
S3—C4—C5—N3 −1.7 (2) C2—S1—C1—S2 −173.80 (14)
N1—N2—C2—S1 1.3 (3) C2—S1—C1—N1 1.12 (17)
N1—N2—C2—C6 −179.1 (2) C3—S2—C1—S1 −13.37 (15)
N2—N1—C1—S1 −0.7 (2) C3—S2—C1—N1 171.75 (15)
N2—N1—C1—S2 174.98 (15) C3—S3—C4—C5 1.02 (15)
C1—S1—C2—N2 −1.35 (17) C3—N3—C5—C4 1.6 (3)
C1—S1—C2—C6 179.1 (2) C4—S3—C3—S2 178.37 (11)
C1—S2—C3—S3 156.31 (10) C4—S3—C3—N3 −0.16 (15)
C1—S2—C3—N3 −25.35 (18) C5—N3—C3—S2 −179.10 (14)
C1—N1—N2—C2 −0.4 (3) C5—N3—C3—S3 −0.7 (2)

5-Methyl-2-[(1,3-thiazol-2-yl)sulfanyl]-1,3,4-thiadiazole. Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4···N2i 0.93 2.55 3.472 (2) 169
C5—H5···N3ii 0.93 2.63 3.392 (3) 139

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y, −z+1.

References

  1. Altıntop, M. D., Ciftci, H. I., Radwan, M. O., Sever, B., Kaplancıklı, Z. A., Ali, T. F. & Özdemir, A. (2017). Molecules23, 59. https://doi.org/10.3390/molecules23010059
  2. Arshad, M. F., Alam, A., Alshammari, A. A., Alhazza, M. B., Alzimam, I. M., Alam, M. A., Mustafa, G., Ansari, M. S., Alotaibi, A. M., Alotaibi, A. A., Kumar, S., Asdaq, S. M. B., Imran, M., Deb, P. K., Venugopala, K. N. & Jomah, S. (2022). Molecules27, 3994–3994. [DOI] [PMC free article] [PubMed]
  3. Bharty, M. K., Bharti, A., Dani, R. K., Kushawaha, S. K., Dulare, R. & Singh, N. K. (2012). Polyhedron41, 52–60.
  4. Booq, R. Y., Tawfik, E. A., Alfassam, H. A., Alfahad, A. J. & Alyamani, E. J. (2021). Antibiotics10, 1480. [DOI] [PMC free article] [PubMed]
  5. Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Burnett, M. E., Johnston, H. M. & Green, K. N. (2015). Acta Cryst. C71, 1074–1079. [DOI] [PubMed]
  7. Cabral, L. I., Brás, E. M., Henriques, M. S., Marques, C., Frija, L. M., Barreira, L., Paixão, J. A., Fausto, R. & Cristiano, M. L. S. (2018). Chem. A Eur. J.24, 3251–3262. [DOI] [PubMed]
  8. Dani, R. K., Bharty, M. K., Kushawaha, S. K., Paswan, S., Prakash, O., Singh, R. K. & Singh, N. K. (2013). J. Mol. Struct.1054–1055, 251–261.
  9. Dani, R. K., Bharty, M. K., Paswan, S., Singh, S. & Singh, N. K. (2014). Inorg. Chim. Acta421, 519–530.
  10. Dawood, K. M., Eldebss, T. M., El-Zahabi, H. S., Yousef, M. H. & Metz, P. (2013). Eur. J. Med. Chem.70, 740–749. [DOI] [PubMed]
  11. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
  12. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  13. Grabowski, S. J. (2020). Crystals10, 130–130.
  14. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  15. Hipler, F., Winter, M. & Fischer, R. A. (2003). J. Mol. Struct.658, 179–191.
  16. Hussain, Z., Pengfei, S., Yimin, L., Shasha, L., Zehao, L., Yifan, Y., Linhui, L., Linying, Z. & Yong, W. (2022). Pathogens and Disease80(1), 1–11. [DOI] [PubMed]
  17. Jumal, J. & Yamin, B. M. (2006). Acta Cryst. E62, o2893–o2894.
  18. Kennedy, A. R., Khalaf, A. I., Suckling, C. J. & Waigh, R. D. (2004). Acta Cryst. E60, o1510–o1512.
  19. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst.48, 3–10. [DOI] [PMC free article] [PubMed]
  20. Luqman, A., Blair, V. L., Brammananth, R., Crellin, P. K., Coppel, R. L. & Andrews, P. C. (2016). Eur. J. Inorg. Chem. pp. 2738–2749.
  21. Renier, O., Bousrez, G., Smetana, V., Mudring, A. V. & Rogers, R. D. (2023). CrystEngComm25, 530–540.
  22. Shaikh, S. A., Wakchaure, S. N., Labhade, S. R., Kale, R. R., Alavala, R. R., Chobe, S. S., Jain, K. S., Labhade, H. S. & Bhanushali, D. D. (2024). BMC Chem.18, 119–119. [DOI] [PMC free article] [PubMed]
  23. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  24. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  25. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst.54, 1006–1011. [DOI] [PMC free article] [PubMed]
  26. Weidner, T., Ballav, N., Zharnikov, M., Priebe, A., Long, N. J., Maurer, J., Winter, R., Rothenberger, A., Fenske, D., Rother, D., Bruhn, C., Fink, H. & Siemeling, U. (2008). Chem. Eur. J.14, 4346–4360. [DOI] [PubMed]
  27. Zhao, Y., Ouyang, G. P., Xu, W. M., Jin, L. H. & Yuan, K. (2010). Chin. J. Org. Chem.30, 1093–1097.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989025004980/dx2067sup1.cif

e-81-00569-sup1.cif (552.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025004980/dx2067Isup3.hkl

e-81-00569-Isup3.hkl (184.1KB, hkl)

CCDC reference: 2455808

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES